Metamath Proof Explorer


Theorem tendoeq2

Description: Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan , we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013)

Ref Expression
Hypotheses tendoeq2.b B = Base K
tendoeq2.h H = LHyp K
tendoeq2.t T = LTrn K W
tendoeq2.e E = TEndo K W
Assertion tendoeq2 K HL W H U E V E f T f I B U f = V f U = V

Proof

Step Hyp Ref Expression
1 tendoeq2.b B = Base K
2 tendoeq2.h H = LHyp K
3 tendoeq2.t T = LTrn K W
4 tendoeq2.e E = TEndo K W
5 1 2 4 tendoid K HL W H U E U I B = I B
6 5 adantrr K HL W H U E V E U I B = I B
7 1 2 4 tendoid K HL W H V E V I B = I B
8 7 adantrl K HL W H U E V E V I B = I B
9 6 8 eqtr4d K HL W H U E V E U I B = V I B
10 fveq2 f = I B U f = U I B
11 fveq2 f = I B V f = V I B
12 10 11 eqeq12d f = I B U f = V f U I B = V I B
13 9 12 syl5ibrcom K HL W H U E V E f = I B U f = V f
14 13 ralrimivw K HL W H U E V E f T f = I B U f = V f
15 r19.26 f T f = I B U f = V f f I B U f = V f f T f = I B U f = V f f T f I B U f = V f
16 jaob f = I B f I B U f = V f f = I B U f = V f f I B U f = V f
17 exmidne f = I B f I B
18 pm5.5 f = I B f I B f = I B f I B U f = V f U f = V f
19 17 18 ax-mp f = I B f I B U f = V f U f = V f
20 16 19 bitr3i f = I B U f = V f f I B U f = V f U f = V f
21 20 ralbii f T f = I B U f = V f f I B U f = V f f T U f = V f
22 15 21 bitr3i f T f = I B U f = V f f T f I B U f = V f f T U f = V f
23 2 3 4 tendoeq1 K HL W H U E V E f T U f = V f U = V
24 23 3expia K HL W H U E V E f T U f = V f U = V
25 22 24 syl5bi K HL W H U E V E f T f = I B U f = V f f T f I B U f = V f U = V
26 14 25 mpand K HL W H U E V E f T f I B U f = V f U = V
27 26 3impia K HL W H U E V E f T f I B U f = V f U = V