Step |
Hyp |
Ref |
Expression |
1 |
|
tendoeq2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
tendoeq2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
tendoeq2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoeq2.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
1 2 4
|
tendoid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
6 |
5
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
7 |
1 2 4
|
tendoid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑉 ∈ 𝐸 ) → ( 𝑉 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
8 |
7
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑉 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
9 |
6 8
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( 𝑉 ‘ ( I ↾ 𝐵 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑈 ‘ ( I ↾ 𝐵 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑉 ‘ 𝑓 ) = ( 𝑉 ‘ ( I ↾ 𝐵 ) ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑓 = ( I ↾ 𝐵 ) → ( ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ↔ ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( 𝑉 ‘ ( I ↾ 𝐵 ) ) ) ) |
13 |
9 12
|
syl5ibrcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) |
14 |
13
|
ralrimivw |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ∀ 𝑓 ∈ 𝑇 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) |
15 |
|
r19.26 |
⊢ ( ∀ 𝑓 ∈ 𝑇 ( ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ∧ ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) ↔ ( ∀ 𝑓 ∈ 𝑇 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) ) |
16 |
|
jaob |
⊢ ( ( ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ↔ ( ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ∧ ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) ) |
17 |
|
exmidne |
⊢ ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) |
18 |
|
pm5.5 |
⊢ ( ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) → ( ( ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ↔ ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ( ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ↔ ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) |
20 |
16 19
|
bitr3i |
⊢ ( ( ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ∧ ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) ↔ ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) |
21 |
20
|
ralbii |
⊢ ( ∀ 𝑓 ∈ 𝑇 ( ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ∧ ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) |
22 |
15 21
|
bitr3i |
⊢ ( ( ∀ 𝑓 ∈ 𝑇 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) |
23 |
2 3 4
|
tendoeq1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑈 = 𝑉 ) |
24 |
23
|
3expia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) → 𝑈 = 𝑉 ) ) |
25 |
22 24
|
syl5bi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( ( ∀ 𝑓 ∈ 𝑇 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) → 𝑈 = 𝑉 ) ) |
26 |
14 25
|
mpand |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( ∀ 𝑓 ∈ 𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑈 = 𝑉 ) ) |
27 |
26
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) → 𝑈 = 𝑉 ) |