Metamath Proof Explorer


Theorem tendoeq2

Description: Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan , we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013)

Ref Expression
Hypotheses tendoeq2.b 𝐵 = ( Base ‘ 𝐾 )
tendoeq2.h 𝐻 = ( LHyp ‘ 𝐾 )
tendoeq2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendoeq2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendoeq2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) → 𝑈 = 𝑉 )

Proof

Step Hyp Ref Expression
1 tendoeq2.b 𝐵 = ( Base ‘ 𝐾 )
2 tendoeq2.h 𝐻 = ( LHyp ‘ 𝐾 )
3 tendoeq2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 tendoeq2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
5 1 2 4 tendoid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) )
6 5 adantrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) )
7 1 2 4 tendoid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑉𝐸 ) → ( 𝑉 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) )
8 7 adantrl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( 𝑉 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) )
9 6 8 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( 𝑉 ‘ ( I ↾ 𝐵 ) ) )
10 fveq2 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑈 ‘ ( I ↾ 𝐵 ) ) )
11 fveq2 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑉𝑓 ) = ( 𝑉 ‘ ( I ↾ 𝐵 ) ) )
12 10 11 eqeq12d ( 𝑓 = ( I ↾ 𝐵 ) → ( ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ↔ ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( 𝑉 ‘ ( I ↾ 𝐵 ) ) ) )
13 9 12 syl5ibrcom ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) )
14 13 ralrimivw ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ∀ 𝑓𝑇 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) )
15 r19.26 ( ∀ 𝑓𝑇 ( ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ∧ ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) ↔ ( ∀ 𝑓𝑇 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ∧ ∀ 𝑓𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) )
16 jaob ( ( ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ↔ ( ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ∧ ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) )
17 exmidne ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) )
18 pm5.5 ( ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) → ( ( ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ↔ ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) )
19 17 18 ax-mp ( ( ( 𝑓 = ( I ↾ 𝐵 ) ∨ 𝑓 ≠ ( I ↾ 𝐵 ) ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ↔ ( 𝑈𝑓 ) = ( 𝑉𝑓 ) )
20 16 19 bitr3i ( ( ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ∧ ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) ↔ ( 𝑈𝑓 ) = ( 𝑉𝑓 ) )
21 20 ralbii ( ∀ 𝑓𝑇 ( ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ∧ ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) ↔ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) )
22 15 21 bitr3i ( ( ∀ 𝑓𝑇 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ∧ ∀ 𝑓𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) ↔ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) )
23 2 3 4 tendoeq1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑈 = 𝑉 )
24 23 3expia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) → 𝑈 = 𝑉 ) )
25 22 24 syl5bi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( ( ∀ 𝑓𝑇 ( 𝑓 = ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ∧ ∀ 𝑓𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) → 𝑈 = 𝑉 ) )
26 14 25 mpand ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( ∀ 𝑓𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑈 = 𝑉 ) )
27 26 3impia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑓 ≠ ( I ↾ 𝐵 ) → ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) ) → 𝑈 = 𝑉 )