Step |
Hyp |
Ref |
Expression |
1 |
|
tendoeq2.b |
|- B = ( Base ` K ) |
2 |
|
tendoeq2.h |
|- H = ( LHyp ` K ) |
3 |
|
tendoeq2.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
tendoeq2.e |
|- E = ( ( TEndo ` K ) ` W ) |
5 |
1 2 4
|
tendoid |
|- ( ( ( K e. HL /\ W e. H ) /\ U e. E ) -> ( U ` ( _I |` B ) ) = ( _I |` B ) ) |
6 |
5
|
adantrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> ( U ` ( _I |` B ) ) = ( _I |` B ) ) |
7 |
1 2 4
|
tendoid |
|- ( ( ( K e. HL /\ W e. H ) /\ V e. E ) -> ( V ` ( _I |` B ) ) = ( _I |` B ) ) |
8 |
7
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> ( V ` ( _I |` B ) ) = ( _I |` B ) ) |
9 |
6 8
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> ( U ` ( _I |` B ) ) = ( V ` ( _I |` B ) ) ) |
10 |
|
fveq2 |
|- ( f = ( _I |` B ) -> ( U ` f ) = ( U ` ( _I |` B ) ) ) |
11 |
|
fveq2 |
|- ( f = ( _I |` B ) -> ( V ` f ) = ( V ` ( _I |` B ) ) ) |
12 |
10 11
|
eqeq12d |
|- ( f = ( _I |` B ) -> ( ( U ` f ) = ( V ` f ) <-> ( U ` ( _I |` B ) ) = ( V ` ( _I |` B ) ) ) ) |
13 |
9 12
|
syl5ibrcom |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) |
14 |
13
|
ralrimivw |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> A. f e. T ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) |
15 |
|
r19.26 |
|- ( A. f e. T ( ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) /\ ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) <-> ( A. f e. T ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) /\ A. f e. T ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) ) |
16 |
|
jaob |
|- ( ( ( f = ( _I |` B ) \/ f =/= ( _I |` B ) ) -> ( U ` f ) = ( V ` f ) ) <-> ( ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) /\ ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) ) |
17 |
|
exmidne |
|- ( f = ( _I |` B ) \/ f =/= ( _I |` B ) ) |
18 |
|
pm5.5 |
|- ( ( f = ( _I |` B ) \/ f =/= ( _I |` B ) ) -> ( ( ( f = ( _I |` B ) \/ f =/= ( _I |` B ) ) -> ( U ` f ) = ( V ` f ) ) <-> ( U ` f ) = ( V ` f ) ) ) |
19 |
17 18
|
ax-mp |
|- ( ( ( f = ( _I |` B ) \/ f =/= ( _I |` B ) ) -> ( U ` f ) = ( V ` f ) ) <-> ( U ` f ) = ( V ` f ) ) |
20 |
16 19
|
bitr3i |
|- ( ( ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) /\ ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) <-> ( U ` f ) = ( V ` f ) ) |
21 |
20
|
ralbii |
|- ( A. f e. T ( ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) /\ ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) <-> A. f e. T ( U ` f ) = ( V ` f ) ) |
22 |
15 21
|
bitr3i |
|- ( ( A. f e. T ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) /\ A. f e. T ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) <-> A. f e. T ( U ` f ) = ( V ` f ) ) |
23 |
2 3 4
|
tendoeq1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) /\ A. f e. T ( U ` f ) = ( V ` f ) ) -> U = V ) |
24 |
23
|
3expia |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> ( A. f e. T ( U ` f ) = ( V ` f ) -> U = V ) ) |
25 |
22 24
|
syl5bi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> ( ( A. f e. T ( f = ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) /\ A. f e. T ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) -> U = V ) ) |
26 |
14 25
|
mpand |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> ( A. f e. T ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) -> U = V ) ) |
27 |
26
|
3impia |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) /\ A. f e. T ( f =/= ( _I |` B ) -> ( U ` f ) = ( V ` f ) ) ) -> U = V ) |