| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoid.b |
|- B = ( Base ` K ) |
| 2 |
|
tendoid.h |
|- H = ( LHyp ` K ) |
| 3 |
|
tendoid.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 4 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 5 |
1 2 4
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) |
| 6 |
5
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) |
| 7 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 8 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 9 |
7 2 4 8 3
|
tendotp |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) ) |
| 10 |
6 9
|
mpd3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) ) |
| 11 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 12 |
1 11 2 8
|
trlid0 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) = ( 0. ` K ) ) |
| 13 |
12
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) = ( 0. ` K ) ) |
| 14 |
10 13
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) ) |
| 15 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> K e. OP ) |
| 17 |
2 4 3
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) -> ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 18 |
6 17
|
mpd3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 19 |
1 2 4 8
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B ) |
| 20 |
18 19
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B ) |
| 21 |
1 7 11
|
ople0 |
|- ( ( K e. OP /\ ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B ) -> ( ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) ) |
| 22 |
16 20 21
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) ) |
| 23 |
14 22
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) |
| 24 |
1 11 2 4 8
|
trlid0b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( S ` ( _I |` B ) ) = ( _I |` B ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) ) |
| 25 |
18 24
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( S ` ( _I |` B ) ) = ( _I |` B ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) ) |
| 26 |
23 25
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S ` ( _I |` B ) ) = ( _I |` B ) ) |