Metamath Proof Explorer


Theorem tendoid

Description: The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013)

Ref Expression
Hypotheses tendoid.b
|- B = ( Base ` K )
tendoid.h
|- H = ( LHyp ` K )
tendoid.e
|- E = ( ( TEndo ` K ) ` W )
Assertion tendoid
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S ` ( _I |` B ) ) = ( _I |` B ) )

Proof

Step Hyp Ref Expression
1 tendoid.b
 |-  B = ( Base ` K )
2 tendoid.h
 |-  H = ( LHyp ` K )
3 tendoid.e
 |-  E = ( ( TEndo ` K ) ` W )
4 eqid
 |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W )
5 1 2 4 idltrn
 |-  ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. ( ( LTrn ` K ) ` W ) )
6 5 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( _I |` B ) e. ( ( LTrn ` K ) ` W ) )
7 eqid
 |-  ( le ` K ) = ( le ` K )
8 eqid
 |-  ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W )
9 7 2 4 8 3 tendotp
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) )
10 6 9 mpd3an3
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) )
11 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
12 1 11 2 8 trlid0
 |-  ( ( K e. HL /\ W e. H ) -> ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) = ( 0. ` K ) )
13 12 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) = ( 0. ` K ) )
14 10 13 breqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) )
15 hlop
 |-  ( K e. HL -> K e. OP )
16 15 ad2antrr
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> K e. OP )
17 2 4 3 tendocl
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) -> ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) )
18 6 17 mpd3an3
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) )
19 1 2 4 8 trlcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B )
20 18 19 syldan
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B )
21 1 7 11 ople0
 |-  ( ( K e. OP /\ ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B ) -> ( ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) )
22 16 20 21 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) )
23 14 22 mpbid
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) )
24 1 11 2 4 8 trlid0b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( S ` ( _I |` B ) ) = ( _I |` B ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) )
25 18 24 syldan
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( S ` ( _I |` B ) ) = ( _I |` B ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) )
26 23 25 mpbird
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S ` ( _I |` B ) ) = ( _I |` B ) )