Step |
Hyp |
Ref |
Expression |
1 |
|
tendoid.b |
|- B = ( Base ` K ) |
2 |
|
tendoid.h |
|- H = ( LHyp ` K ) |
3 |
|
tendoid.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
5 |
1 2 4
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) |
6 |
5
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) |
7 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
8 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
9 |
7 2 4 8 3
|
tendotp |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) ) |
10 |
6 9
|
mpd3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) ) |
11 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
12 |
1 11 2 8
|
trlid0 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) = ( 0. ` K ) ) |
13 |
12
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( _I |` B ) ) = ( 0. ` K ) ) |
14 |
10 13
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) ) |
15 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
16 |
15
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> K e. OP ) |
17 |
2 4 3
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) -> ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) |
18 |
6 17
|
mpd3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) |
19 |
1 2 4 8
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B ) |
20 |
18 19
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B ) |
21 |
1 7 11
|
ople0 |
|- ( ( K e. OP /\ ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) e. B ) -> ( ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) ) |
22 |
16 20 21
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) ( le ` K ) ( 0. ` K ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) ) |
23 |
14 22
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) |
24 |
1 11 2 4 8
|
trlid0b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` ( _I |` B ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( S ` ( _I |` B ) ) = ( _I |` B ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) ) |
25 |
18 24
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( S ` ( _I |` B ) ) = ( _I |` B ) <-> ( ( ( trL ` K ) ` W ) ` ( S ` ( _I |` B ) ) ) = ( 0. ` K ) ) ) |
26 |
23 25
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S ` ( _I |` B ) ) = ( _I |` B ) ) |