Metamath Proof Explorer


Theorem tendocan

Description: Cancellation law: if the values of two trace-preserving endormorphisms are equal, so are the endormorphisms. Lemma J of Crawley p. 118. (Contributed by NM, 21-Jun-2013)

Ref Expression
Hypotheses tendocan.b B = Base K
tendocan.h H = LHyp K
tendocan.t T = LTrn K W
tendocan.e E = TEndo K W
Assertion tendocan K HL W H U E V E U F = V F F T F I B U = V

Proof

Step Hyp Ref Expression
1 tendocan.b B = Base K
2 tendocan.h H = LHyp K
3 tendocan.t T = LTrn K W
4 tendocan.e E = TEndo K W
5 simp1l K HL W H U E V E U F = V F F T F I B K HL
6 simp1r K HL W H U E V E U F = V F F T F I B W H
7 simp21 K HL W H U E V E U F = V F F T F I B U E
8 simp22 K HL W H U E V E U F = V F F T F I B V E
9 simp11 K HL W H U E V E U F = V F F T F I B h T h I B K HL W H
10 simp12 K HL W H U E V E U F = V F F T F I B h T h I B U E V E U F = V F
11 simp13l K HL W H U E V E U F = V F F T F I B h T h I B F T
12 simp13r K HL W H U E V E U F = V F F T F I B h T h I B F I B
13 simp2 K HL W H U E V E U F = V F F T F I B h T h I B h T
14 11 12 13 3jca K HL W H U E V E U F = V F F T F I B h T h I B F T F I B h T
15 simp3 K HL W H U E V E U F = V F F T F I B h T h I B h I B
16 eqid trL K W = trL K W
17 1 2 3 16 4 cdlemj3 K HL W H U E V E U F = V F F T F I B h T h I B U h = V h
18 9 10 14 15 17 syl31anc K HL W H U E V E U F = V F F T F I B h T h I B U h = V h
19 18 3exp K HL W H U E V E U F = V F F T F I B h T h I B U h = V h
20 19 ralrimiv K HL W H U E V E U F = V F F T F I B h T h I B U h = V h
21 1 2 3 4 tendoeq2 K HL W H U E V E h T h I B U h = V h U = V
22 5 6 7 8 20 21 syl221anc K HL W H U E V E U F = V F F T F I B U = V