Description: Part of proof of Lemma J of Crawley p. 118. Eliminate g . (Contributed by NM, 20-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemj.b | |
|
cdlemj.h | |
||
cdlemj.t | |
||
cdlemj.r | |
||
cdlemj.e | |
||
Assertion | cdlemj3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemj.b | |
|
2 | cdlemj.h | |
|
3 | cdlemj.t | |
|
4 | cdlemj.r | |
|
5 | cdlemj.e | |
|
6 | simpl1 | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 7 8 2 | lhpexle2 | |
10 | 6 9 | syl | |
11 | simpl1l | |
|
12 | 11 | adantr | |
13 | simpl1r | |
|
14 | 13 | adantr | |
15 | simprl | |
|
16 | simprr1 | |
|
17 | 1 7 8 2 3 4 | cdlemfnid | |
18 | 12 14 15 16 17 | syl22anc | |
19 | simp1l | |
|
20 | simp1r | |
|
21 | simp3l | |
|
22 | simp3rr | |
|
23 | simp2r2 | |
|
24 | 23 | necomd | |
25 | simp3rl | |
|
26 | 24 25 | neeqtrrd | |
27 | simp2r3 | |
|
28 | 25 27 | eqnetrd | |
29 | 1 2 3 4 5 | cdlemj2 | |
30 | 19 20 21 22 26 28 29 | syl132anc | |
31 | 30 | 3expia | |
32 | 31 | expd | |
33 | 32 | rexlimdv | |
34 | 18 33 | mpd | |
35 | 10 34 | rexlimddv | |