Metamath Proof Explorer


Theorem cdlemj3

Description: Part of proof of Lemma J of Crawley p. 118. Eliminate g . (Contributed by NM, 20-Jun-2013)

Ref Expression
Hypotheses cdlemj.b B = Base K
cdlemj.h H = LHyp K
cdlemj.t T = LTrn K W
cdlemj.r R = trL K W
cdlemj.e E = TEndo K W
Assertion cdlemj3 K HL W H U E V E U F = V F F T F I B h T h I B U h = V h

Proof

Step Hyp Ref Expression
1 cdlemj.b B = Base K
2 cdlemj.h H = LHyp K
3 cdlemj.t T = LTrn K W
4 cdlemj.r R = trL K W
5 cdlemj.e E = TEndo K W
6 simpl1 K HL W H U E V E U F = V F F T F I B h T h I B K HL W H
7 eqid K = K
8 eqid Atoms K = Atoms K
9 7 8 2 lhpexle2 K HL W H u Atoms K u K W u R F u R h
10 6 9 syl K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h
11 simpl1l K HL W H U E V E U F = V F F T F I B h T h I B K HL
12 11 adantr K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h K HL
13 simpl1r K HL W H U E V E U F = V F F T F I B h T h I B W H
14 13 adantr K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h W H
15 simprl K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h u Atoms K
16 simprr1 K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h u K W
17 1 7 8 2 3 4 cdlemfnid K HL W H u Atoms K u K W g T R g = u g I B
18 12 14 15 16 17 syl22anc K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B
19 simp1l K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B K HL W H U E V E U F = V F F T F I B h T
20 simp1r K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B h I B
21 simp3l K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B g T
22 simp3rr K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B g I B
23 simp2r2 K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B u R F
24 23 necomd K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B R F u
25 simp3rl K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B R g = u
26 24 25 neeqtrrd K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B R F R g
27 simp2r3 K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B u R h
28 25 27 eqnetrd K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B R g R h
29 1 2 3 4 5 cdlemj2 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h U h = V h
30 19 20 21 22 26 28 29 syl132anc K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B U h = V h
31 30 3expia K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B U h = V h
32 31 expd K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B U h = V h
33 32 rexlimdv K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h g T R g = u g I B U h = V h
34 18 33 mpd K HL W H U E V E U F = V F F T F I B h T h I B u Atoms K u K W u R F u R h U h = V h
35 10 34 rexlimddv K HL W H U E V E U F = V F F T F I B h T h I B U h = V h