Metamath Proof Explorer


Theorem cdlemfnid

Description: cdlemf with additional constraint of non-identity. (Contributed by NM, 20-Jun-2013)

Ref Expression
Hypotheses cdlemfnid.b B=BaseK
cdlemfnid.l ˙=K
cdlemfnid.a A=AtomsK
cdlemfnid.h H=LHypK
cdlemfnid.t T=LTrnKW
cdlemfnid.r R=trLKW
Assertion cdlemfnid KHLWHUAU˙WfTRf=UfIB

Proof

Step Hyp Ref Expression
1 cdlemfnid.b B=BaseK
2 cdlemfnid.l ˙=K
3 cdlemfnid.a A=AtomsK
4 cdlemfnid.h H=LHypK
5 cdlemfnid.t T=LTrnKW
6 cdlemfnid.r R=trLKW
7 2 3 4 5 6 cdlemf KHLWHUAU˙WfTRf=U
8 simp3 KHLWHUAU˙WfTRf=URf=U
9 simp1rl KHLWHUAU˙WfTRf=UUA
10 8 9 eqeltrd KHLWHUAU˙WfTRf=URfA
11 simp1l KHLWHUAU˙WfTRf=UKHLWH
12 simp2 KHLWHUAU˙WfTRf=UfT
13 1 3 4 5 6 trlnidatb KHLWHfTfIBRfA
14 11 12 13 syl2anc KHLWHUAU˙WfTRf=UfIBRfA
15 10 14 mpbird KHLWHUAU˙WfTRf=UfIB
16 8 15 jca KHLWHUAU˙WfTRf=URf=UfIB
17 16 3expia KHLWHUAU˙WfTRf=URf=UfIB
18 17 reximdva KHLWHUAU˙WfTRf=UfTRf=UfIB
19 7 18 mpd KHLWHUAU˙WfTRf=UfIB