Metamath Proof Explorer


Theorem cdlemf

Description: Lemma F in Crawley p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013)

Ref Expression
Hypotheses cdlemf.l ˙ = K
cdlemf.a A = Atoms K
cdlemf.h H = LHyp K
cdlemf.t T = LTrn K W
cdlemf.r R = trL K W
Assertion cdlemf K HL W H U A U ˙ W f T R f = U

Proof

Step Hyp Ref Expression
1 cdlemf.l ˙ = K
2 cdlemf.a A = Atoms K
3 cdlemf.h H = LHyp K
4 cdlemf.t T = LTrn K W
5 cdlemf.r R = trL K W
6 eqid join K = join K
7 eqid meet K = meet K
8 1 6 2 3 7 cdlemf2 K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W
9 simp1l K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W K HL W H
10 simp2l K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W p A
11 simp3ll K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W ¬ p ˙ W
12 simp2r K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W q A
13 simp3lr K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W ¬ q ˙ W
14 1 2 3 4 cdleme50ex K HL W H p A ¬ p ˙ W q A ¬ q ˙ W f T f p = q
15 9 10 11 12 13 14 syl122anc K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q
16 simp3r K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q f p = q
17 16 oveq2d K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q p join K f p = p join K q
18 17 oveq1d K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q p join K f p meet K W = p join K q meet K W
19 simp11 K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q K HL W H
20 simp3l K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q f T
21 simp13l K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q p A
22 simp2ll K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q ¬ p ˙ W
23 1 6 7 2 3 4 5 trlval2 K HL W H f T p A ¬ p ˙ W R f = p join K f p meet K W
24 19 20 21 22 23 syl112anc K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q R f = p join K f p meet K W
25 simp2r K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q U = p join K q meet K W
26 18 24 25 3eqtr4d K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q R f = U
27 26 3exp K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q R f = U
28 27 3expia K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q R f = U
29 28 3imp K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q R f = U
30 29 expd K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q R f = U
31 30 reximdvai K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T f p = q f T R f = U
32 15 31 mpd K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T R f = U
33 32 3exp K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T R f = U
34 33 rexlimdvv K HL W H U A U ˙ W p A q A ¬ p ˙ W ¬ q ˙ W U = p join K q meet K W f T R f = U
35 8 34 mpd K HL W H U A U ˙ W f T R f = U