Metamath Proof Explorer


Theorem cdlemf

Description: Lemma F in Crawley p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013)

Ref Expression
Hypotheses cdlemf.l ˙=K
cdlemf.a A=AtomsK
cdlemf.h H=LHypK
cdlemf.t T=LTrnKW
cdlemf.r R=trLKW
Assertion cdlemf KHLWHUAU˙WfTRf=U

Proof

Step Hyp Ref Expression
1 cdlemf.l ˙=K
2 cdlemf.a A=AtomsK
3 cdlemf.h H=LHypK
4 cdlemf.t T=LTrnKW
5 cdlemf.r R=trLKW
6 eqid joinK=joinK
7 eqid meetK=meetK
8 1 6 2 3 7 cdlemf2 KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKW
9 simp1l KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWKHLWH
10 simp2l KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWpA
11 simp3ll KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKW¬p˙W
12 simp2r KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWqA
13 simp3lr KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKW¬q˙W
14 1 2 3 4 cdleme50ex KHLWHpA¬p˙WqA¬q˙WfTfp=q
15 9 10 11 12 13 14 syl122anc KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=q
16 simp3r KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qfp=q
17 16 oveq2d KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qpjoinKfp=pjoinKq
18 17 oveq1d KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qpjoinKfpmeetKW=pjoinKqmeetKW
19 simp11 KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qKHLWH
20 simp3l KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qfT
21 simp13l KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qpA
22 simp2ll KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=q¬p˙W
23 1 6 7 2 3 4 5 trlval2 KHLWHfTpA¬p˙WRf=pjoinKfpmeetKW
24 19 20 21 22 23 syl112anc KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qRf=pjoinKfpmeetKW
25 simp2r KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qU=pjoinKqmeetKW
26 18 24 25 3eqtr4d KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qRf=U
27 26 3exp KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qRf=U
28 27 3expia KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qRf=U
29 28 3imp KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qRf=U
30 29 expd KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qRf=U
31 30 reximdvai KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTfp=qfTRf=U
32 15 31 mpd KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTRf=U
33 32 3exp KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTRf=U
34 33 rexlimdvv KHLWHUAU˙WpAqA¬p˙W¬q˙WU=pjoinKqmeetKWfTRf=U
35 8 34 mpd KHLWHUAU˙WfTRf=U