Metamath Proof Explorer


Theorem cdlemf

Description: Lemma F in Crawley p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013)

Ref Expression
Hypotheses cdlemf.l = ( le ‘ 𝐾 )
cdlemf.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemf.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemf.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemf.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemf ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ∃ 𝑓𝑇 ( 𝑅𝑓 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 cdlemf.l = ( le ‘ 𝐾 )
2 cdlemf.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemf.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemf.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemf.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
7 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
8 1 6 2 3 7 cdlemf2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ∃ 𝑝𝐴𝑞𝐴 ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) )
9 simp1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → 𝑝𝐴 )
11 simp3ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ¬ 𝑝 𝑊 )
12 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → 𝑞𝐴 )
13 simp3lr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ¬ 𝑞 𝑊 )
14 1 2 3 4 cdleme50ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) → ∃ 𝑓𝑇 ( 𝑓𝑝 ) = 𝑞 )
15 9 10 11 12 13 14 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ∃ 𝑓𝑇 ( 𝑓𝑝 ) = 𝑞 )
16 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → ( 𝑓𝑝 ) = 𝑞 )
17 16 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → ( 𝑝 ( join ‘ 𝐾 ) ( 𝑓𝑝 ) ) = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) )
18 17 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) )
19 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
20 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → 𝑓𝑇 )
21 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → 𝑝𝐴 )
22 simp2ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → ¬ 𝑝 𝑊 )
23 1 6 7 2 3 4 5 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑅𝑓 ) = ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
24 19 20 21 22 23 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → ( 𝑅𝑓 ) = ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
25 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) )
26 18 24 25 3eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) ) → ( 𝑅𝑓 ) = 𝑈 )
27 26 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → ( ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) → ( 𝑅𝑓 ) = 𝑈 ) ) )
28 27 3expia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ( ( 𝑝𝐴𝑞𝐴 ) → ( ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) → ( 𝑅𝑓 ) = 𝑈 ) ) ) )
29 28 3imp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ( ( 𝑓𝑇 ∧ ( 𝑓𝑝 ) = 𝑞 ) → ( 𝑅𝑓 ) = 𝑈 ) )
30 29 expd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ( 𝑓𝑇 → ( ( 𝑓𝑝 ) = 𝑞 → ( 𝑅𝑓 ) = 𝑈 ) ) )
31 30 reximdvai ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ( ∃ 𝑓𝑇 ( 𝑓𝑝 ) = 𝑞 → ∃ 𝑓𝑇 ( 𝑅𝑓 ) = 𝑈 ) )
32 15 31 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ∃ 𝑓𝑇 ( 𝑅𝑓 ) = 𝑈 )
33 32 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ( ( 𝑝𝐴𝑞𝐴 ) → ( ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) → ∃ 𝑓𝑇 ( 𝑅𝑓 ) = 𝑈 ) ) )
34 33 rexlimdvv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ( ∃ 𝑝𝐴𝑞𝐴 ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) → ∃ 𝑓𝑇 ( 𝑅𝑓 ) = 𝑈 ) )
35 8 34 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ∃ 𝑓𝑇 ( 𝑅𝑓 ) = 𝑈 )