Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemf1.l |
|
2 |
|
cdlemf1.j |
|
3 |
|
cdlemf1.a |
|
4 |
|
cdlemf1.h |
|
5 |
|
cdlemf2.m |
|
6 |
1 3 4
|
lhpexnle |
|
7 |
6
|
adantr |
|
8 |
1 2 3 4
|
cdlemf1 |
|
9 |
|
simpr1r |
|
10 |
|
simpr32 |
|
11 |
|
simpr33 |
|
12 |
|
simplrr |
|
13 |
|
hllat |
|
14 |
13
|
ad3antrrr |
|
15 |
|
simplrl |
|
16 |
|
eqid |
|
17 |
16 3
|
atbase |
|
18 |
15 17
|
syl |
|
19 |
|
simplll |
|
20 |
|
simpr1l |
|
21 |
|
simpr2 |
|
22 |
16 2 3
|
hlatjcl |
|
23 |
19 20 21 22
|
syl3anc |
|
24 |
16 4
|
lhpbase |
|
25 |
24
|
ad3antlr |
|
26 |
16 1 5
|
latlem12 |
|
27 |
14 18 23 25 26
|
syl13anc |
|
28 |
11 12 27
|
mpbi2and |
|
29 |
|
hlatl |
|
30 |
29
|
ad3antrrr |
|
31 |
|
simpll |
|
32 |
|
simpr31 |
|
33 |
1 2 5 3 4
|
lhpat |
|
34 |
31 20 9 21 32 33
|
syl122anc |
|
35 |
1 3
|
atcmp |
|
36 |
30 15 34 35
|
syl3anc |
|
37 |
28 36
|
mpbid |
|
38 |
9 10 37
|
jca31 |
|
39 |
38
|
3exp2 |
|
40 |
39
|
3impia |
|
41 |
40
|
reximdvai |
|
42 |
8 41
|
mpd |
|
43 |
42
|
3expia |
|
44 |
43
|
expd |
|
45 |
44
|
reximdvai |
|
46 |
7 45
|
mpd |
|