Metamath Proof Explorer


Theorem cdlemf1

Description: Part of Lemma F in Crawley p. 116. TODO: should this or part of it become a stand-alone theorem? (Contributed by NM, 12-Apr-2013)

Ref Expression
Hypotheses cdlemf1.l ˙=K
cdlemf1.j ˙=joinK
cdlemf1.a A=AtomsK
cdlemf1.h H=LHypK
Assertion cdlemf1 KHLWHUAU˙WPA¬P˙WqAPq¬q˙WU˙P˙q

Proof

Step Hyp Ref Expression
1 cdlemf1.l ˙=K
2 cdlemf1.j ˙=joinK
3 cdlemf1.a A=AtomsK
4 cdlemf1.h H=LHypK
5 simp1l KHLWHUAU˙WPA¬P˙WKHL
6 simp3l KHLWHUAU˙WPA¬P˙WPA
7 simp2l KHLWHUAU˙WPA¬P˙WUA
8 simp2r KHLWHUAU˙WPA¬P˙WU˙W
9 simp3r KHLWHUAU˙WPA¬P˙W¬P˙W
10 nbrne2 U˙W¬P˙WUP
11 10 necomd U˙W¬P˙WPU
12 8 9 11 syl2anc KHLWHUAU˙WPA¬P˙WPU
13 1 2 3 hlsupr KHLPAUAPUqAqPqUq˙P˙U
14 5 6 7 12 13 syl31anc KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙U
15 simp31 KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UqP
16 15 necomd KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UPq
17 simp13r KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙U¬P˙W
18 simp12r KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UU˙W
19 simp11l KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UKHL
20 19 hllatd KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UKLat
21 eqid BaseK=BaseK
22 21 3 atbase qAqBaseK
23 22 3ad2ant2 KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UqBaseK
24 simp12l KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UUA
25 21 3 atbase UAUBaseK
26 24 25 syl KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UUBaseK
27 simp11r KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UWH
28 21 4 lhpbase WHWBaseK
29 27 28 syl KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UWBaseK
30 21 1 2 latjle12 KLatqBaseKUBaseKWBaseKq˙WU˙Wq˙U˙W
31 20 23 26 29 30 syl13anc KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙WU˙Wq˙U˙W
32 31 biimpd KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙WU˙Wq˙U˙W
33 18 32 mpan2d KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙Wq˙U˙W
34 simp33 KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙P˙U
35 hlcvl KHLKCvLat
36 19 35 syl KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UKCvLat
37 simp2 KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UqA
38 simp13l KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UPA
39 simp32 KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UqU
40 1 2 3 cvlatexch2 KCvLatqAPAUAqUq˙P˙UP˙q˙U
41 36 37 38 24 39 40 syl131anc KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙P˙UP˙q˙U
42 34 41 mpd KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UP˙q˙U
43 21 3 atbase PAPBaseK
44 38 43 syl KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UPBaseK
45 21 2 3 hlatjcl KHLqAUAq˙UBaseK
46 19 37 24 45 syl3anc KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙UBaseK
47 21 1 lattr KLatPBaseKq˙UBaseKWBaseKP˙q˙Uq˙U˙WP˙W
48 20 44 46 29 47 syl13anc KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UP˙q˙Uq˙U˙WP˙W
49 42 48 mpand KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙U˙WP˙W
50 33 49 syld KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙WP˙W
51 17 50 mtod KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙U¬q˙W
52 1 2 3 cvlatexch1 KCvLatqAUAPAqPq˙P˙UU˙P˙q
53 36 37 24 38 15 52 syl131anc KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙Uq˙P˙UU˙P˙q
54 34 53 mpd KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UU˙P˙q
55 16 51 54 3jca KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UPq¬q˙WU˙P˙q
56 55 3exp KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UPq¬q˙WU˙P˙q
57 56 reximdvai KHLWHUAU˙WPA¬P˙WqAqPqUq˙P˙UqAPq¬q˙WU˙P˙q
58 14 57 mpd KHLWHUAU˙WPA¬P˙WqAPq¬q˙WU˙P˙q