Metamath Proof Explorer


Theorem tendo1ne0

Description: The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013)

Ref Expression
Hypotheses tendoid0.b B = Base K
tendoid0.h H = LHyp K
tendoid0.t T = LTrn K W
tendoid0.e E = TEndo K W
tendoid0.o O = f T I B
Assertion tendo1ne0 K HL W H I T O

Proof

Step Hyp Ref Expression
1 tendoid0.b B = Base K
2 tendoid0.h H = LHyp K
3 tendoid0.t T = LTrn K W
4 tendoid0.e E = TEndo K W
5 tendoid0.o O = f T I B
6 1 2 3 cdlemftr0 K HL W H g T g I B
7 simp3 K HL W H g T g I B g I B
8 fveq1 I T = O I T g = O g
9 8 adantl K HL W H g T g I B I T = O I T g = O g
10 simpl2 K HL W H g T g I B I T = O g T
11 fvresi g T I T g = g
12 10 11 syl K HL W H g T g I B I T = O I T g = g
13 5 1 tendo02 g T O g = I B
14 10 13 syl K HL W H g T g I B I T = O O g = I B
15 9 12 14 3eqtr3d K HL W H g T g I B I T = O g = I B
16 15 ex K HL W H g T g I B I T = O g = I B
17 16 necon3d K HL W H g T g I B g I B I T O
18 7 17 mpd K HL W H g T g I B I T O
19 18 rexlimdv3a K HL W H g T g I B I T O
20 6 19 mpd K HL W H I T O