Metamath Proof Explorer


Theorem tendoconid

Description: The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013)

Ref Expression
Hypotheses tendoid0.b B = Base K
tendoid0.h H = LHyp K
tendoid0.t T = LTrn K W
tendoid0.e E = TEndo K W
tendoid0.o O = f T I B
Assertion tendoconid K HL W H U E U O V E V O U V O

Proof

Step Hyp Ref Expression
1 tendoid0.b B = Base K
2 tendoid0.h H = LHyp K
3 tendoid0.t T = LTrn K W
4 tendoid0.e E = TEndo K W
5 tendoid0.o O = f T I B
6 1 2 3 cdlemftr0 K HL W H g T g I B
7 6 3ad2ant1 K HL W H U E U O V E V O g T g I B
8 simpl1 K HL W H U E U O V E V O g T g I B K HL W H
9 simpl3l K HL W H U E U O V E V O g T g I B V E
10 2 3 4 tendof K HL W H V E V : T T
11 8 9 10 syl2anc K HL W H U E U O V E V O g T g I B V : T T
12 simprl K HL W H U E U O V E V O g T g I B g T
13 fvco3 V : T T g T U V g = U V g
14 11 12 13 syl2anc K HL W H U E U O V E V O g T g I B U V g = U V g
15 simpl2r K HL W H U E U O V E V O g T g I B U O
16 simpl2l K HL W H U E U O V E V O g T g I B U E
17 2 3 4 tendocl K HL W H V E g T V g T
18 8 9 12 17 syl3anc K HL W H U E U O V E V O g T g I B V g T
19 simpl3r K HL W H U E U O V E V O g T g I B V O
20 simpr K HL W H U E U O V E V O g T g I B g T g I B
21 1 2 3 4 5 tendoid0 K HL W H V E g T g I B V g = I B V = O
22 8 9 20 21 syl3anc K HL W H U E U O V E V O g T g I B V g = I B V = O
23 22 necon3bid K HL W H U E U O V E V O g T g I B V g I B V O
24 19 23 mpbird K HL W H U E U O V E V O g T g I B V g I B
25 1 2 3 4 5 tendoid0 K HL W H U E V g T V g I B U V g = I B U = O
26 8 16 18 24 25 syl112anc K HL W H U E U O V E V O g T g I B U V g = I B U = O
27 26 necon3bid K HL W H U E U O V E V O g T g I B U V g I B U O
28 15 27 mpbird K HL W H U E U O V E V O g T g I B U V g I B
29 14 28 eqnetrd K HL W H U E U O V E V O g T g I B U V g I B
30 2 4 tendococl K HL W H U E V E U V E
31 8 16 9 30 syl3anc K HL W H U E U O V E V O g T g I B U V E
32 1 2 3 4 5 tendoid0 K HL W H U V E g T g I B U V g = I B U V = O
33 8 31 20 32 syl3anc K HL W H U E U O V E V O g T g I B U V g = I B U V = O
34 33 necon3bid K HL W H U E U O V E V O g T g I B U V g I B U V O
35 29 34 mpbid K HL W H U E U O V E V O g T g I B U V O
36 7 35 rexlimddv K HL W H U E U O V E V O U V O