Metamath Proof Explorer


Theorem tendoconid

Description: The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013)

Ref Expression
Hypotheses tendoid0.b B=BaseK
tendoid0.h H=LHypK
tendoid0.t T=LTrnKW
tendoid0.e E=TEndoKW
tendoid0.o O=fTIB
Assertion tendoconid KHLWHUEUOVEVOUVO

Proof

Step Hyp Ref Expression
1 tendoid0.b B=BaseK
2 tendoid0.h H=LHypK
3 tendoid0.t T=LTrnKW
4 tendoid0.e E=TEndoKW
5 tendoid0.o O=fTIB
6 1 2 3 cdlemftr0 KHLWHgTgIB
7 6 3ad2ant1 KHLWHUEUOVEVOgTgIB
8 simpl1 KHLWHUEUOVEVOgTgIBKHLWH
9 simpl3l KHLWHUEUOVEVOgTgIBVE
10 2 3 4 tendof KHLWHVEV:TT
11 8 9 10 syl2anc KHLWHUEUOVEVOgTgIBV:TT
12 simprl KHLWHUEUOVEVOgTgIBgT
13 fvco3 V:TTgTUVg=UVg
14 11 12 13 syl2anc KHLWHUEUOVEVOgTgIBUVg=UVg
15 simpl2r KHLWHUEUOVEVOgTgIBUO
16 simpl2l KHLWHUEUOVEVOgTgIBUE
17 2 3 4 tendocl KHLWHVEgTVgT
18 8 9 12 17 syl3anc KHLWHUEUOVEVOgTgIBVgT
19 simpl3r KHLWHUEUOVEVOgTgIBVO
20 simpr KHLWHUEUOVEVOgTgIBgTgIB
21 1 2 3 4 5 tendoid0 KHLWHVEgTgIBVg=IBV=O
22 8 9 20 21 syl3anc KHLWHUEUOVEVOgTgIBVg=IBV=O
23 22 necon3bid KHLWHUEUOVEVOgTgIBVgIBVO
24 19 23 mpbird KHLWHUEUOVEVOgTgIBVgIB
25 1 2 3 4 5 tendoid0 KHLWHUEVgTVgIBUVg=IBU=O
26 8 16 18 24 25 syl112anc KHLWHUEUOVEVOgTgIBUVg=IBU=O
27 26 necon3bid KHLWHUEUOVEVOgTgIBUVgIBUO
28 15 27 mpbird KHLWHUEUOVEVOgTgIBUVgIB
29 14 28 eqnetrd KHLWHUEUOVEVOgTgIBUVgIB
30 2 4 tendococl KHLWHUEVEUVE
31 8 16 9 30 syl3anc KHLWHUEUOVEVOgTgIBUVE
32 1 2 3 4 5 tendoid0 KHLWHUVEgTgIBUVg=IBUV=O
33 8 31 20 32 syl3anc KHLWHUEUOVEVOgTgIBUVg=IBUV=O
34 33 necon3bid KHLWHUEUOVEVOgTgIBUVgIBUVO
35 29 34 mpbid KHLWHUEUOVEVOgTgIBUVO
36 7 35 rexlimddv KHLWHUEUOVEVOUVO