Metamath Proof Explorer


Theorem tendotr

Description: The trace of the value of a nonzero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses tendotr.b B = Base K
tendotr.h H = LHyp K
tendotr.t T = LTrn K W
tendotr.r R = trL K W
tendotr.e E = TEndo K W
tendotr.o O = f T I B
Assertion tendotr K HL W H U E U O F T R U F = R F

Proof

Step Hyp Ref Expression
1 tendotr.b B = Base K
2 tendotr.h H = LHyp K
3 tendotr.t T = LTrn K W
4 tendotr.r R = trL K W
5 tendotr.e E = TEndo K W
6 tendotr.o O = f T I B
7 simpl1 K HL W H U E U O F T F = I B K HL W H
8 simpl2l K HL W H U E U O F T F = I B U E
9 1 2 5 tendoid K HL W H U E U I B = I B
10 7 8 9 syl2anc K HL W H U E U O F T F = I B U I B = I B
11 simpr K HL W H U E U O F T F = I B F = I B
12 11 fveq2d K HL W H U E U O F T F = I B U F = U I B
13 10 12 11 3eqtr4d K HL W H U E U O F T F = I B U F = F
14 13 fveq2d K HL W H U E U O F T F = I B R U F = R F
15 simpl1 K HL W H U E U O F T F I B K HL W H
16 simpl2l K HL W H U E U O F T F I B U E
17 simpl3 K HL W H U E U O F T F I B F T
18 eqid K = K
19 18 2 3 4 5 tendotp K HL W H U E F T R U F K R F
20 15 16 17 19 syl3anc K HL W H U E U O F T F I B R U F K R F
21 simpl1l K HL W H U E U O F T F I B K HL
22 hlatl K HL K AtLat
23 21 22 syl K HL W H U E U O F T F I B K AtLat
24 2 3 5 tendocl K HL W H U E F T U F T
25 15 16 17 24 syl3anc K HL W H U E U O F T F I B U F T
26 simpl2r K HL W H U E U O F T F I B U O
27 simpr K HL W H U E U O F T F I B F I B
28 1 2 3 5 6 tendoid0 K HL W H U E F T F I B U F = I B U = O
29 15 16 17 27 28 syl112anc K HL W H U E U O F T F I B U F = I B U = O
30 29 necon3bid K HL W H U E U O F T F I B U F I B U O
31 26 30 mpbird K HL W H U E U O F T F I B U F I B
32 eqid Atoms K = Atoms K
33 1 32 2 3 4 trlnidat K HL W H U F T U F I B R U F Atoms K
34 15 25 31 33 syl3anc K HL W H U E U O F T F I B R U F Atoms K
35 1 32 2 3 4 trlnidat K HL W H F T F I B R F Atoms K
36 15 17 27 35 syl3anc K HL W H U E U O F T F I B R F Atoms K
37 18 32 atcmp K AtLat R U F Atoms K R F Atoms K R U F K R F R U F = R F
38 23 34 36 37 syl3anc K HL W H U E U O F T F I B R U F K R F R U F = R F
39 20 38 mpbid K HL W H U E U O F T F I B R U F = R F
40 14 39 pm2.61dane K HL W H U E U O F T R U F = R F