Metamath Proof Explorer


Theorem tendococl

Description: The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendoco.h H = LHyp K
tendoco.e E = TEndo K W
Assertion tendococl K HL W H S E T E S T E

Proof

Step Hyp Ref Expression
1 tendoco.h H = LHyp K
2 tendoco.e E = TEndo K W
3 eqid K = K
4 eqid LTrn K W = LTrn K W
5 eqid trL K W = trL K W
6 simp1 K HL W H S E T E K HL W H
7 simp2 K HL W H S E T E S E
8 1 4 2 tendof K HL W H S E S : LTrn K W LTrn K W
9 6 7 8 syl2anc K HL W H S E T E S : LTrn K W LTrn K W
10 simp3 K HL W H S E T E T E
11 1 4 2 tendof K HL W H T E T : LTrn K W LTrn K W
12 6 10 11 syl2anc K HL W H S E T E T : LTrn K W LTrn K W
13 fco S : LTrn K W LTrn K W T : LTrn K W LTrn K W S T : LTrn K W LTrn K W
14 9 12 13 syl2anc K HL W H S E T E S T : LTrn K W LTrn K W
15 simp11l K HL W H S E T E f LTrn K W g LTrn K W K HL
16 simp11r K HL W H S E T E f LTrn K W g LTrn K W W H
17 simp13 K HL W H S E T E f LTrn K W g LTrn K W T E
18 simp2 K HL W H S E T E f LTrn K W g LTrn K W f LTrn K W
19 simp3 K HL W H S E T E f LTrn K W g LTrn K W g LTrn K W
20 1 4 2 tendovalco K HL W H T E f LTrn K W g LTrn K W T f g = T f T g
21 15 16 17 18 19 20 syl32anc K HL W H S E T E f LTrn K W g LTrn K W T f g = T f T g
22 21 fveq2d K HL W H S E T E f LTrn K W g LTrn K W S T f g = S T f T g
23 simp12 K HL W H S E T E f LTrn K W g LTrn K W S E
24 simp11 K HL W H S E T E f LTrn K W g LTrn K W K HL W H
25 1 4 2 tendocl K HL W H T E f LTrn K W T f LTrn K W
26 24 17 18 25 syl3anc K HL W H S E T E f LTrn K W g LTrn K W T f LTrn K W
27 1 4 2 tendocl K HL W H T E g LTrn K W T g LTrn K W
28 24 17 19 27 syl3anc K HL W H S E T E f LTrn K W g LTrn K W T g LTrn K W
29 1 4 2 tendovalco K HL W H S E T f LTrn K W T g LTrn K W S T f T g = S T f S T g
30 15 16 23 26 28 29 syl32anc K HL W H S E T E f LTrn K W g LTrn K W S T f T g = S T f S T g
31 22 30 eqtrd K HL W H S E T E f LTrn K W g LTrn K W S T f g = S T f S T g
32 1 4 ltrnco K HL W H f LTrn K W g LTrn K W f g LTrn K W
33 24 18 19 32 syl3anc K HL W H S E T E f LTrn K W g LTrn K W f g LTrn K W
34 1 4 2 tendocoval K HL W H S E T E f g LTrn K W S T f g = S T f g
35 24 23 17 33 34 syl121anc K HL W H S E T E f LTrn K W g LTrn K W S T f g = S T f g
36 1 4 2 tendocoval K HL W H S E T E f LTrn K W S T f = S T f
37 15 16 23 17 18 36 syl221anc K HL W H S E T E f LTrn K W g LTrn K W S T f = S T f
38 1 4 2 tendocoval K HL W H S E T E g LTrn K W S T g = S T g
39 15 16 23 17 19 38 syl221anc K HL W H S E T E f LTrn K W g LTrn K W S T g = S T g
40 37 39 coeq12d K HL W H S E T E f LTrn K W g LTrn K W S T f S T g = S T f S T g
41 31 35 40 3eqtr4d K HL W H S E T E f LTrn K W g LTrn K W S T f g = S T f S T g
42 eqid Base K = Base K
43 simpl1l K HL W H S E T E f LTrn K W K HL
44 43 hllatd K HL W H S E T E f LTrn K W K Lat
45 simpl1 K HL W H S E T E f LTrn K W K HL W H
46 simpl2 K HL W H S E T E f LTrn K W S E
47 simpl3 K HL W H S E T E f LTrn K W T E
48 simpr K HL W H S E T E f LTrn K W f LTrn K W
49 45 46 47 48 36 syl121anc K HL W H S E T E f LTrn K W S T f = S T f
50 45 47 48 25 syl3anc K HL W H S E T E f LTrn K W T f LTrn K W
51 1 4 2 tendocl K HL W H S E T f LTrn K W S T f LTrn K W
52 45 46 50 51 syl3anc K HL W H S E T E f LTrn K W S T f LTrn K W
53 49 52 eqeltrd K HL W H S E T E f LTrn K W S T f LTrn K W
54 42 1 4 5 trlcl K HL W H S T f LTrn K W trL K W S T f Base K
55 45 53 54 syl2anc K HL W H S E T E f LTrn K W trL K W S T f Base K
56 42 1 4 5 trlcl K HL W H T f LTrn K W trL K W T f Base K
57 45 50 56 syl2anc K HL W H S E T E f LTrn K W trL K W T f Base K
58 42 1 4 5 trlcl K HL W H f LTrn K W trL K W f Base K
59 45 48 58 syl2anc K HL W H S E T E f LTrn K W trL K W f Base K
60 simpl1r K HL W H S E T E f LTrn K W W H
61 43 60 46 47 48 36 syl221anc K HL W H S E T E f LTrn K W S T f = S T f
62 61 fveq2d K HL W H S E T E f LTrn K W trL K W S T f = trL K W S T f
63 3 1 4 5 2 tendotp K HL W H S E T f LTrn K W trL K W S T f K trL K W T f
64 45 46 50 63 syl3anc K HL W H S E T E f LTrn K W trL K W S T f K trL K W T f
65 62 64 eqbrtrd K HL W H S E T E f LTrn K W trL K W S T f K trL K W T f
66 3 1 4 5 2 tendotp K HL W H T E f LTrn K W trL K W T f K trL K W f
67 45 47 48 66 syl3anc K HL W H S E T E f LTrn K W trL K W T f K trL K W f
68 42 3 44 55 57 59 65 67 lattrd K HL W H S E T E f LTrn K W trL K W S T f K trL K W f
69 3 1 4 5 2 6 14 41 68 istendod K HL W H S E T E S T E