Metamath Proof Explorer


Theorem tendo0mul

Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses tendoid0.b 𝐵 = ( Base ‘ 𝐾 )
tendoid0.h 𝐻 = ( LHyp ‘ 𝐾 )
tendoid0.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendoid0.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
tendoid0.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
Assertion tendo0mul ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → ( 𝑂𝑈 ) = 𝑂 )

Proof

Step Hyp Ref Expression
1 tendoid0.b 𝐵 = ( Base ‘ 𝐾 )
2 tendoid0.h 𝐻 = ( LHyp ‘ 𝐾 )
3 tendoid0.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 tendoid0.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
5 tendoid0.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
6 1 2 3 cdlemftr0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵 ) )
7 6 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → ∃ 𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵 ) )
8 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 1 2 3 4 5 tendo0cl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑂𝐸 )
10 9 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑂𝐸 )
11 simplr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑈𝐸 )
12 2 4 tendococl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑂𝐸𝑈𝐸 ) → ( 𝑂𝑈 ) ∈ 𝐸 )
13 8 10 11 12 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑂𝑈 ) ∈ 𝐸 )
14 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑔𝑇 )
15 2 3 4 tendocl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸𝑔𝑇 ) → ( 𝑈𝑔 ) ∈ 𝑇 )
16 8 11 14 15 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈𝑔 ) ∈ 𝑇 )
17 5 1 tendo02 ( ( 𝑈𝑔 ) ∈ 𝑇 → ( 𝑂 ‘ ( 𝑈𝑔 ) ) = ( I ↾ 𝐵 ) )
18 16 17 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑂 ‘ ( 𝑈𝑔 ) ) = ( I ↾ 𝐵 ) )
19 2 3 4 tendocoval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑂𝐸𝑈𝐸 ) ∧ 𝑔𝑇 ) → ( ( 𝑂𝑈 ) ‘ 𝑔 ) = ( 𝑂 ‘ ( 𝑈𝑔 ) ) )
20 8 10 11 14 19 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑂𝑈 ) ‘ 𝑔 ) = ( 𝑂 ‘ ( 𝑈𝑔 ) ) )
21 5 1 tendo02 ( 𝑔𝑇 → ( 𝑂𝑔 ) = ( I ↾ 𝐵 ) )
22 21 ad2antrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑂𝑔 ) = ( I ↾ 𝐵 ) )
23 18 20 22 3eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑂𝑈 ) ‘ 𝑔 ) = ( 𝑂𝑔 ) )
24 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) )
25 1 2 3 4 tendocan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑂𝑈 ) ∈ 𝐸𝑂𝐸 ∧ ( ( 𝑂𝑈 ) ‘ 𝑔 ) = ( 𝑂𝑔 ) ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑂𝑈 ) = 𝑂 )
26 8 13 10 23 24 25 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑂𝑈 ) = 𝑂 )
27 7 26 rexlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → ( 𝑂𝑈 ) = 𝑂 )