Step |
Hyp |
Ref |
Expression |
1 |
|
tendoid0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
tendoid0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
tendoid0.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoid0.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
tendoid0.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
6 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) → 𝐹 ∈ 𝑇 ) |
7 |
5 1
|
tendo02 |
⊢ ( 𝐹 ∈ 𝑇 → ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
9 |
8
|
eqeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ↔ ( 𝑈 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) ) |
10 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) → 𝑈 ∈ 𝐸 ) |
12 |
1 2 3 4 5
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ 𝐸 ) |
13 |
10 12
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) → 𝑂 ∈ 𝐸 ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) → ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) |
15 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) → 𝐹 ∈ 𝑇 ) |
16 |
|
simpl3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) ) |
17 |
1 2 3 4
|
tendocan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) → 𝑈 = 𝑂 ) |
18 |
10 11 13 14 15 16 17
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) → 𝑈 = 𝑂 ) |
19 |
18
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) → 𝑈 = 𝑂 ) ) |
20 |
9 19
|
sylbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑈 ‘ 𝐹 ) = ( I ↾ 𝐵 ) → 𝑈 = 𝑂 ) ) |
21 |
|
fveq1 |
⊢ ( 𝑈 = 𝑂 → ( 𝑈 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑈 = 𝑂 → ( ( 𝑈 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ↔ ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) ) |
23 |
8 22
|
syl5ibrcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 = 𝑂 → ( 𝑈 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) ) |
24 |
20 23
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑈 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ↔ 𝑈 = 𝑂 ) ) |