Metamath Proof Explorer


Theorem tendospass

Description: Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendosp.h H = LHyp K
tendosp.t T = LTrn K W
tendosp.e E = TEndo K W
Assertion tendospass K X W H U E V E F T U V F = U V F

Proof

Step Hyp Ref Expression
1 tendosp.h H = LHyp K
2 tendosp.t T = LTrn K W
3 tendosp.e E = TEndo K W
4 1 2 3 tendof K X W H V E V : T T
5 4 3ad2antr2 K X W H U E V E F T V : T T
6 simpr3 K X W H U E V E F T F T
7 fvco3 V : T T F T U V F = U V F
8 5 6 7 syl2anc K X W H U E V E F T U V F = U V F