Metamath Proof Explorer


Theorem tendospass

Description: Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendosp.h H=LHypK
tendosp.t T=LTrnKW
tendosp.e E=TEndoKW
Assertion tendospass KXWHUEVEFTUVF=UVF

Proof

Step Hyp Ref Expression
1 tendosp.h H=LHypK
2 tendosp.t T=LTrnKW
3 tendosp.e E=TEndoKW
4 1 2 3 tendof KXWHVEV:TT
5 4 3ad2antr2 KXWHUEVEFTV:TT
6 simpr3 KXWHUEVEFTFT
7 fvco3 V:TTFTUVF=UVF
8 5 6 7 syl2anc KXWHUEVEFTUVF=UVF