| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvafvsca.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dvafvsca.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
dvafvsca.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 4 |
|
dvafvsca.u |
|- U = ( ( DVecA ` K ) ` W ) |
| 5 |
|
dvafvsca.s |
|- .x. = ( .s ` U ) |
| 6 |
1 2 3 4 5
|
dvafvsca |
|- ( ( K e. V /\ W e. H ) -> .x. = ( s e. E , f e. T |-> ( s ` f ) ) ) |
| 7 |
6
|
oveqd |
|- ( ( K e. V /\ W e. H ) -> ( R .x. F ) = ( R ( s e. E , f e. T |-> ( s ` f ) ) F ) ) |
| 8 |
|
fveq1 |
|- ( s = R -> ( s ` f ) = ( R ` f ) ) |
| 9 |
|
fveq2 |
|- ( f = F -> ( R ` f ) = ( R ` F ) ) |
| 10 |
|
eqid |
|- ( s e. E , f e. T |-> ( s ` f ) ) = ( s e. E , f e. T |-> ( s ` f ) ) |
| 11 |
|
fvex |
|- ( R ` F ) e. _V |
| 12 |
8 9 10 11
|
ovmpo |
|- ( ( R e. E /\ F e. T ) -> ( R ( s e. E , f e. T |-> ( s ` f ) ) F ) = ( R ` F ) ) |
| 13 |
7 12
|
sylan9eq |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T ) ) -> ( R .x. F ) = ( R ` F ) ) |