Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
diatrl
Next ⟩
diaelrnN
Metamath Proof Explorer
Ascii
Unicode
Theorem
diatrl
Description:
Trace of a member of the partial isomorphism A.
(Contributed by
NM
, 17-Jan-2014)
Ref
Expression
Hypotheses
diatrl.b
⊢
B
=
Base
K
diatrl.l
⊢
≤
˙
=
≤
K
diatrl.h
⊢
H
=
LHyp
⁡
K
diatrl.t
⊢
T
=
LTrn
⁡
K
⁡
W
diatrl.r
⊢
R
=
trL
⁡
K
⁡
W
diatrl.i
⊢
I
=
DIsoA
⁡
K
⁡
W
Assertion
diatrl
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
∧
F
∈
I
⁡
X
→
R
⁡
F
≤
˙
X
Proof
Step
Hyp
Ref
Expression
1
diatrl.b
⊢
B
=
Base
K
2
diatrl.l
⊢
≤
˙
=
≤
K
3
diatrl.h
⊢
H
=
LHyp
⁡
K
4
diatrl.t
⊢
T
=
LTrn
⁡
K
⁡
W
5
diatrl.r
⊢
R
=
trL
⁡
K
⁡
W
6
diatrl.i
⊢
I
=
DIsoA
⁡
K
⁡
W
7
1
2
3
4
5
6
diaelval
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
∈
I
⁡
X
↔
F
∈
T
∧
R
⁡
F
≤
˙
X
8
simpr
⊢
F
∈
T
∧
R
⁡
F
≤
˙
X
→
R
⁡
F
≤
˙
X
9
7
8
syl6bi
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
∈
I
⁡
X
→
R
⁡
F
≤
˙
X
10
9
3impia
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
∧
F
∈
I
⁡
X
→
R
⁡
F
≤
˙
X