Metamath Proof Explorer


Theorem diatrl

Description: Trace of a member of the partial isomorphism A. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses diatrl.b B = Base K
diatrl.l ˙ = K
diatrl.h H = LHyp K
diatrl.t T = LTrn K W
diatrl.r R = trL K W
diatrl.i I = DIsoA K W
Assertion diatrl K V W H X B X ˙ W F I X R F ˙ X

Proof

Step Hyp Ref Expression
1 diatrl.b B = Base K
2 diatrl.l ˙ = K
3 diatrl.h H = LHyp K
4 diatrl.t T = LTrn K W
5 diatrl.r R = trL K W
6 diatrl.i I = DIsoA K W
7 1 2 3 4 5 6 diaelval K V W H X B X ˙ W F I X F T R F ˙ X
8 simpr F T R F ˙ X R F ˙ X
9 7 8 syl6bi K V W H X B X ˙ W F I X R F ˙ X
10 9 3impia K V W H X B X ˙ W F I X R F ˙ X