Step |
Hyp |
Ref |
Expression |
1 |
|
diatrl.b |
|- B = ( Base ` K ) |
2 |
|
diatrl.l |
|- .<_ = ( le ` K ) |
3 |
|
diatrl.h |
|- H = ( LHyp ` K ) |
4 |
|
diatrl.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
diatrl.r |
|- R = ( ( trL ` K ) ` W ) |
6 |
|
diatrl.i |
|- I = ( ( DIsoA ` K ) ` W ) |
7 |
1 2 3 4 5 6
|
diaelval |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( F e. ( I ` X ) <-> ( F e. T /\ ( R ` F ) .<_ X ) ) ) |
8 |
|
simpr |
|- ( ( F e. T /\ ( R ` F ) .<_ X ) -> ( R ` F ) .<_ X ) |
9 |
7 8
|
syl6bi |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( F e. ( I ` X ) -> ( R ` F ) .<_ X ) ) |
10 |
9
|
3impia |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ F e. ( I ` X ) ) -> ( R ` F ) .<_ X ) |