Metamath Proof Explorer


Theorem diaelrnN

Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diaelrn.h H = LHyp K
diaelrn.t T = LTrn K W
diaelrn.i I = DIsoA K W
Assertion diaelrnN K V W H S ran I S T

Proof

Step Hyp Ref Expression
1 diaelrn.h H = LHyp K
2 diaelrn.t T = LTrn K W
3 diaelrn.i I = DIsoA K W
4 eqid Base K = Base K
5 eqid K = K
6 4 5 1 3 diafn K V W H I Fn y Base K | y K W
7 fvelrnb I Fn y Base K | y K W S ran I x y Base K | y K W I x = S
8 6 7 syl K V W H S ran I x y Base K | y K W I x = S
9 breq1 y = x y K W x K W
10 9 elrab x y Base K | y K W x Base K x K W
11 4 5 1 2 3 diass K V W H x Base K x K W I x T
12 11 ex K V W H x Base K x K W I x T
13 sseq1 I x = S I x T S T
14 13 biimpcd I x T I x = S S T
15 12 14 syl6 K V W H x Base K x K W I x = S S T
16 10 15 syl5bi K V W H x y Base K | y K W I x = S S T
17 16 rexlimdv K V W H x y Base K | y K W I x = S S T
18 8 17 sylbid K V W H S ran I S T
19 18 imp K V W H S ran I S T