Metamath Proof Explorer


Theorem diaelrnN

Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diaelrn.h H=LHypK
diaelrn.t T=LTrnKW
diaelrn.i I=DIsoAKW
Assertion diaelrnN KVWHSranIST

Proof

Step Hyp Ref Expression
1 diaelrn.h H=LHypK
2 diaelrn.t T=LTrnKW
3 diaelrn.i I=DIsoAKW
4 eqid BaseK=BaseK
5 eqid K=K
6 4 5 1 3 diafn KVWHIFnyBaseK|yKW
7 fvelrnb IFnyBaseK|yKWSranIxyBaseK|yKWIx=S
8 6 7 syl KVWHSranIxyBaseK|yKWIx=S
9 breq1 y=xyKWxKW
10 9 elrab xyBaseK|yKWxBaseKxKW
11 4 5 1 2 3 diass KVWHxBaseKxKWIxT
12 11 ex KVWHxBaseKxKWIxT
13 sseq1 Ix=SIxTST
14 13 biimpcd IxTIx=SST
15 12 14 syl6 KVWHxBaseKxKWIx=SST
16 10 15 biimtrid KVWHxyBaseK|yKWIx=SST
17 16 rexlimdv KVWHxyBaseK|yKWIx=SST
18 8 17 sylbid KVWHSranIST
19 18 imp KVWHSranIST