| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dialss.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dialss.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dialss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dialss.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dialss.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dialss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 7 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) ) |
| 8 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
| 11 |
3 8 4 9 10
|
dvabase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 14 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 16 |
3 14 4 15
|
dvavbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝑈 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 17 |
16
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ 𝑈 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ 𝑈 ) ) |
| 19 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) |
| 20 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) ) |
| 21 |
6
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → 𝑆 = ( LSubSp ‘ 𝑈 ) ) |
| 22 |
1 2 3 14 5
|
diass |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 23 |
1 2 3 5
|
dian0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ≠ ∅ ) |
| 24 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 25 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 26 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
| 27 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ) |
| 28 |
1 2 3 14 5
|
diael |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ) → 𝑎 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 29 |
24 26 27 28
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑎 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 30 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
| 31 |
3 14 8 4 30
|
dvavsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) = ( 𝑥 ‘ 𝑎 ) ) |
| 32 |
24 25 29 31
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) = ( 𝑥 ‘ 𝑎 ) ) |
| 33 |
32
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) = ( ( 𝑥 ‘ 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) ) |
| 34 |
3 14 8
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 35 |
24 25 29 34
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑥 ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 36 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) |
| 37 |
1 2 3 14 5
|
diael |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) → 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 38 |
24 26 36 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 39 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 40 |
3 14 4 39
|
dvavadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑥 ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( 𝑥 ‘ 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) = ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) |
| 41 |
24 35 38 40
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ‘ 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) = ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) |
| 42 |
33 41
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) = ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) |
| 43 |
3 14
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 44 |
24 35 38 43
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 45 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 46 |
45
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝐾 ∈ Lat ) |
| 47 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 48 |
1 3 14 47
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) ∈ 𝐵 ) |
| 49 |
24 44 48
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) ∈ 𝐵 ) |
| 50 |
1 3 14 47
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ∈ 𝐵 ) |
| 51 |
24 35 50
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ∈ 𝐵 ) |
| 52 |
1 3 14 47
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ∈ 𝐵 ) |
| 53 |
24 38 52
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ∈ 𝐵 ) |
| 54 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 55 |
1 54
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ∈ 𝐵 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ∈ 𝐵 ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ∈ 𝐵 ) |
| 56 |
46 51 53 55
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ∈ 𝐵 ) |
| 57 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 58 |
2 54 3 14 47
|
trlco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) ≤ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ) |
| 59 |
24 35 38 58
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) ≤ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ) |
| 60 |
1 3 14 47
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑎 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑎 ) ∈ 𝐵 ) |
| 61 |
24 29 60
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑎 ) ∈ 𝐵 ) |
| 62 |
2 3 14 47 8
|
tendotp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑎 ) ) |
| 63 |
24 25 29 62
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑎 ) ) |
| 64 |
1 2 3 14 47 5
|
diatrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑎 ) ≤ 𝑋 ) |
| 65 |
24 26 27 64
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑎 ) ≤ 𝑋 ) |
| 66 |
1 2 46 51 61 57 63 65
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ≤ 𝑋 ) |
| 67 |
1 2 3 14 47 5
|
diatrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≤ 𝑋 ) |
| 68 |
24 26 36 67
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≤ 𝑋 ) |
| 69 |
1 2 54
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ∈ 𝐵 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ≤ 𝑋 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≤ 𝑋 ) ↔ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ≤ 𝑋 ) ) |
| 70 |
46 51 53 57 69
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ≤ 𝑋 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≤ 𝑋 ) ↔ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ≤ 𝑋 ) ) |
| 71 |
66 68 70
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ 𝑎 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ≤ 𝑋 ) |
| 72 |
1 2 46 49 56 57 59 71
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) ≤ 𝑋 ) |
| 73 |
1 2 3 14 47 5
|
diaelval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ∈ ( 𝐼 ‘ 𝑋 ) ↔ ( ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) ≤ 𝑋 ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ∈ ( 𝐼 ‘ 𝑋 ) ↔ ( ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ) ≤ 𝑋 ) ) ) |
| 75 |
44 72 74
|
mpbir2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ‘ 𝑎 ) ∘ 𝑏 ) ∈ ( 𝐼 ‘ 𝑋 ) ) |
| 76 |
42 75
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) ∈ ( 𝐼 ‘ 𝑋 ) ) |
| 77 |
7 13 18 19 20 21 22 23 76
|
islssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |