Metamath Proof Explorer


Theorem dvavadd

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafvadd.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafvadd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafvadd.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafvadd.v + = ( +g𝑈 )
Assertion dvavadd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐹 + 𝐺 ) = ( 𝐹𝐺 ) )

Proof

Step Hyp Ref Expression
1 dvafvadd.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafvadd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafvadd.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
4 dvafvadd.v + = ( +g𝑈 )
5 1 2 3 4 dvafvadd ( ( 𝐾𝑉𝑊𝐻 ) → + = ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) )
6 5 oveqd ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐹 + 𝐺 ) = ( 𝐹 ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) 𝐺 ) )
7 coexg ( ( 𝐹𝑇𝐺𝑇 ) → ( 𝐹𝐺 ) ∈ V )
8 coeq1 ( 𝑓 = 𝐹 → ( 𝑓𝑔 ) = ( 𝐹𝑔 ) )
9 coeq2 ( 𝑔 = 𝐺 → ( 𝐹𝑔 ) = ( 𝐹𝐺 ) )
10 eqid ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) = ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) )
11 8 9 10 ovmpog ( ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝐺 ) ∈ V ) → ( 𝐹 ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) 𝐺 ) = ( 𝐹𝐺 ) )
12 7 11 mpd3an3 ( ( 𝐹𝑇𝐺𝑇 ) → ( 𝐹 ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) 𝐺 ) = ( 𝐹𝐺 ) )
13 6 12 sylan9eq ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐹 + 𝐺 ) = ( 𝐹𝐺 ) )