Step |
Hyp |
Ref |
Expression |
1 |
|
dvafvadd.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvafvadd.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvafvadd.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvafvadd.v |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
1 2 3 4
|
dvafvadd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → + = ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
6 |
5
|
oveqd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 + 𝐺 ) = ( 𝐹 ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 𝐺 ) ) |
7 |
|
coexg |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
8 |
|
coeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∘ 𝑔 ) = ( 𝐹 ∘ 𝑔 ) ) |
9 |
|
coeq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝐺 ) ) |
10 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) |
11 |
8 9 10
|
ovmpog |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ∘ 𝐺 ) ∈ V ) → ( 𝐹 ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
12 |
7 11
|
mpd3an3 |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
13 |
6 12
|
sylan9eq |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐹 + 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |