Metamath Proof Explorer


Theorem dvavadd

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafvadd.h H = LHyp K
dvafvadd.t T = LTrn K W
dvafvadd.u U = DVecA K W
dvafvadd.v + ˙ = + U
Assertion dvavadd K V W H F T G T F + ˙ G = F G

Proof

Step Hyp Ref Expression
1 dvafvadd.h H = LHyp K
2 dvafvadd.t T = LTrn K W
3 dvafvadd.u U = DVecA K W
4 dvafvadd.v + ˙ = + U
5 1 2 3 4 dvafvadd K V W H + ˙ = f T , g T f g
6 5 oveqd K V W H F + ˙ G = F f T , g T f g G
7 coexg F T G T F G V
8 coeq1 f = F f g = F g
9 coeq2 g = G F g = F G
10 eqid f T , g T f g = f T , g T f g
11 8 9 10 ovmpog F T G T F G V F f T , g T f g G = F G
12 7 11 mpd3an3 F T G T F f T , g T f g G = F G
13 6 12 sylan9eq K V W H F T G T F + ˙ G = F G