Metamath Proof Explorer


Theorem dvafvadd

Description: The vector sum operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafvadd.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafvadd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafvadd.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafvadd.v + = ( +g𝑈 )
Assertion dvafvadd ( ( 𝐾𝑋𝑊𝐻 ) → + = ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 dvafvadd.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafvadd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafvadd.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
4 dvafvadd.v + = ( +g𝑈 )
5 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 5 6 3 dvaset ( ( 𝐾𝑋𝑊𝐻 ) → 𝑈 = ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) )
8 7 fveq2d ( ( 𝐾𝑋𝑊𝐻 ) → ( +g𝑈 ) = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) ) )
9 2 fvexi 𝑇 ∈ V
10 9 9 mpoex ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ∈ V
11 eqid ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } )
12 11 lmodplusg ( ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ∈ V → ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) ) )
13 10 12 ax-mp ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) )
14 8 4 13 3eqtr4g ( ( 𝐾𝑋𝑊𝐻 ) → + = ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) )