Metamath Proof Explorer


Theorem diaord

Description: The partial isomorphism A for a lattice K is order-preserving in the region under co-atom W . Part of Lemma M of Crawley p. 120 line 28. (Contributed by NM, 26-Nov-2013)

Ref Expression
Hypotheses dia11.b 𝐵 = ( Base ‘ 𝐾 )
dia11.l = ( le ‘ 𝐾 )
dia11.h 𝐻 = ( LHyp ‘ 𝐾 )
dia11.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diaord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ↔ 𝑋 𝑌 ) )

Proof

Step Hyp Ref Expression
1 dia11.b 𝐵 = ( Base ‘ 𝐾 )
2 dia11.l = ( le ‘ 𝐾 )
3 dia11.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dia11.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 5 6 4 diaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑋 } )
8 7 3adant3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐼𝑋 ) = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑋 } )
9 1 2 3 5 6 4 diaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐼𝑌 ) = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑌 } )
10 9 3adant2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐼𝑌 ) = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑌 } )
11 8 10 sseq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ↔ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑋 } ⊆ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑌 } ) )
12 ss2rab ( { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑋 } ⊆ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑌 } ↔ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑋 → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑌 ) )
13 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
14 1 2 13 3 5 6 trlord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝑋 𝑌 ↔ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑋 → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑌 ) ) )
15 12 14 bitr4id ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑋 } ⊆ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) 𝑌 } ↔ 𝑋 𝑌 ) )
16 11 15 bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ↔ 𝑋 𝑌 ) )