| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibelval1st2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dibelval1st2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dibelval1st2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dibelval1st2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dibelval1st2.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dibelval1st2.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
1 2 3 7 6
|
dibelval1st |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 1st ‘ 𝑌 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
| 9 |
1 2 3 4 5 7
|
diatrl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 1st ‘ 𝑌 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) → ( 𝑅 ‘ ( 1st ‘ 𝑌 ) ) ≤ 𝑋 ) |
| 10 |
8 9
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 𝑅 ‘ ( 1st ‘ 𝑌 ) ) ≤ 𝑋 ) |