Metamath Proof Explorer


Theorem dibelval1st2N

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibelval1st2.b
|- B = ( Base ` K )
dibelval1st2.l
|- .<_ = ( le ` K )
dibelval1st2.h
|- H = ( LHyp ` K )
dibelval1st2.t
|- T = ( ( LTrn ` K ) ` W )
dibelval1st2.r
|- R = ( ( trL ` K ) ` W )
dibelval1st2.i
|- I = ( ( DIsoB ` K ) ` W )
Assertion dibelval1st2N
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ Y e. ( I ` X ) ) -> ( R ` ( 1st ` Y ) ) .<_ X )

Proof

Step Hyp Ref Expression
1 dibelval1st2.b
 |-  B = ( Base ` K )
2 dibelval1st2.l
 |-  .<_ = ( le ` K )
3 dibelval1st2.h
 |-  H = ( LHyp ` K )
4 dibelval1st2.t
 |-  T = ( ( LTrn ` K ) ` W )
5 dibelval1st2.r
 |-  R = ( ( trL ` K ) ` W )
6 dibelval1st2.i
 |-  I = ( ( DIsoB ` K ) ` W )
7 eqid
 |-  ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W )
8 1 2 3 7 6 dibelval1st
 |-  ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ Y e. ( I ` X ) ) -> ( 1st ` Y ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) )
9 1 2 3 4 5 7 diatrl
 |-  ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ ( 1st ` Y ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) -> ( R ` ( 1st ` Y ) ) .<_ X )
10 8 9 syld3an3
 |-  ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ Y e. ( I ` X ) ) -> ( R ` ( 1st ` Y ) ) .<_ X )