Step |
Hyp |
Ref |
Expression |
1 |
|
dibelval2nd.b |
|- B = ( Base ` K ) |
2 |
|
dibelval2nd.l |
|- .<_ = ( le ` K ) |
3 |
|
dibelval2nd.h |
|- H = ( LHyp ` K ) |
4 |
|
dibelval2nd.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
dibelval2nd.o |
|- .0. = ( f e. T |-> ( _I |` B ) ) |
6 |
|
dibelval2nd.i |
|- I = ( ( DIsoB ` K ) ` W ) |
7 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
8 |
1 2 3 4 5 7 6
|
dibval2 |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) ) |
9 |
8
|
eleq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( Y e. ( I ` X ) <-> Y e. ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) ) ) |
10 |
9
|
biimp3a |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ Y e. ( I ` X ) ) -> Y e. ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) ) |
11 |
|
xp2nd |
|- ( Y e. ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) -> ( 2nd ` Y ) e. { .0. } ) |
12 |
|
elsni |
|- ( ( 2nd ` Y ) e. { .0. } -> ( 2nd ` Y ) = .0. ) |
13 |
10 11 12
|
3syl |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ Y e. ( I ` X ) ) -> ( 2nd ` Y ) = .0. ) |