Metamath Proof Explorer


Theorem dibelval2nd

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses dibelval2nd.b 𝐵 = ( Base ‘ 𝐾 )
dibelval2nd.l = ( le ‘ 𝐾 )
dibelval2nd.h 𝐻 = ( LHyp ‘ 𝐾 )
dibelval2nd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dibelval2nd.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
dibelval2nd.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibelval2nd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑋 ) ) → ( 2nd𝑌 ) = 0 )

Proof

Step Hyp Ref Expression
1 dibelval2nd.b 𝐵 = ( Base ‘ 𝐾 )
2 dibelval2nd.l = ( le ‘ 𝐾 )
3 dibelval2nd.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dibelval2nd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 dibelval2nd.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
6 dibelval2nd.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
8 1 2 3 4 5 7 6 dibval2 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) )
9 8 eleq2d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑋 ) ↔ 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ) )
10 9 biimp3a ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑋 ) ) → 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) )
11 xp2nd ( 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) → ( 2nd𝑌 ) ∈ { 0 } )
12 elsni ( ( 2nd𝑌 ) ∈ { 0 } → ( 2nd𝑌 ) = 0 )
13 10 11 12 3syl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑋 ) ) → ( 2nd𝑌 ) = 0 )