Step |
Hyp |
Ref |
Expression |
1 |
|
dibelval2nd.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dibelval2nd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dibelval2nd.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dibelval2nd.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dibelval2nd.o |
⊢ 0 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
6 |
|
dibelval2nd.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 2 3 4 5 7 6
|
dibval2 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ) |
9 |
8
|
eleq2d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ↔ 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ) ) |
10 |
9
|
biimp3a |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ) → 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ) |
11 |
|
xp2nd |
⊢ ( 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) → ( 2nd ‘ 𝑌 ) ∈ { 0 } ) |
12 |
|
elsni |
⊢ ( ( 2nd ‘ 𝑌 ) ∈ { 0 } → ( 2nd ‘ 𝑌 ) = 0 ) |
13 |
10 11 12
|
3syl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 2nd ‘ 𝑌 ) = 0 ) |