Metamath Proof Explorer


Theorem dibelval2nd

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses dibelval2nd.b B=BaseK
dibelval2nd.l ˙=K
dibelval2nd.h H=LHypK
dibelval2nd.t T=LTrnKW
dibelval2nd.o 0˙=fTIB
dibelval2nd.i I=DIsoBKW
Assertion dibelval2nd KVWHXBX˙WYIX2ndY=0˙

Proof

Step Hyp Ref Expression
1 dibelval2nd.b B=BaseK
2 dibelval2nd.l ˙=K
3 dibelval2nd.h H=LHypK
4 dibelval2nd.t T=LTrnKW
5 dibelval2nd.o 0˙=fTIB
6 dibelval2nd.i I=DIsoBKW
7 eqid DIsoAKW=DIsoAKW
8 1 2 3 4 5 7 6 dibval2 KVWHXBX˙WIX=DIsoAKWX×0˙
9 8 eleq2d KVWHXBX˙WYIXYDIsoAKWX×0˙
10 9 biimp3a KVWHXBX˙WYIXYDIsoAKWX×0˙
11 xp2nd YDIsoAKWX×0˙2ndY0˙
12 elsni 2ndY0˙2ndY=0˙
13 10 11 12 3syl KVWHXBX˙WYIX2ndY=0˙