Metamath Proof Explorer


Theorem dibelval2nd

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses dibelval2nd.b B = Base K
dibelval2nd.l ˙ = K
dibelval2nd.h H = LHyp K
dibelval2nd.t T = LTrn K W
dibelval2nd.o 0 ˙ = f T I B
dibelval2nd.i I = DIsoB K W
Assertion dibelval2nd K V W H X B X ˙ W Y I X 2 nd Y = 0 ˙

Proof

Step Hyp Ref Expression
1 dibelval2nd.b B = Base K
2 dibelval2nd.l ˙ = K
3 dibelval2nd.h H = LHyp K
4 dibelval2nd.t T = LTrn K W
5 dibelval2nd.o 0 ˙ = f T I B
6 dibelval2nd.i I = DIsoB K W
7 eqid DIsoA K W = DIsoA K W
8 1 2 3 4 5 7 6 dibval2 K V W H X B X ˙ W I X = DIsoA K W X × 0 ˙
9 8 eleq2d K V W H X B X ˙ W Y I X Y DIsoA K W X × 0 ˙
10 9 biimp3a K V W H X B X ˙ W Y I X Y DIsoA K W X × 0 ˙
11 xp2nd Y DIsoA K W X × 0 ˙ 2 nd Y 0 ˙
12 elsni 2 nd Y 0 ˙ 2 nd Y = 0 ˙
13 10 11 12 3syl K V W H X B X ˙ W Y I X 2 nd Y = 0 ˙