Metamath Proof Explorer


Theorem dibn0

Description: The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014)

Ref Expression
Hypotheses dibn0.b B = Base K
dibn0.l ˙ = K
dibn0.h H = LHyp K
dibn0.i I = DIsoB K W
Assertion dibn0 K HL W H X B X ˙ W I X

Proof

Step Hyp Ref Expression
1 dibn0.b B = Base K
2 dibn0.l ˙ = K
3 dibn0.h H = LHyp K
4 dibn0.i I = DIsoB K W
5 eqid LTrn K W = LTrn K W
6 eqid f LTrn K W I B = f LTrn K W I B
7 eqid DIsoA K W = DIsoA K W
8 1 2 3 5 6 7 4 dibval2 K HL W H X B X ˙ W I X = DIsoA K W X × f LTrn K W I B
9 1 2 3 7 dian0 K HL W H X B X ˙ W DIsoA K W X
10 fvex LTrn K W V
11 10 mptex f LTrn K W I B V
12 11 snnz f LTrn K W I B
13 9 12 jctir K HL W H X B X ˙ W DIsoA K W X f LTrn K W I B
14 xpnz DIsoA K W X f LTrn K W I B DIsoA K W X × f LTrn K W I B
15 13 14 sylib K HL W H X B X ˙ W DIsoA K W X × f LTrn K W I B
16 8 15 eqnetrd K HL W H X B X ˙ W I X