Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dibn0
Next ⟩
dibfna
Metamath Proof Explorer
Ascii
Unicode
Theorem
dibn0
Description:
The value of the partial isomorphism B is not empty.
(Contributed by
NM
, 18-Jan-2014)
Ref
Expression
Hypotheses
dibn0.b
⊢
B
=
Base
K
dibn0.l
⊢
≤
˙
=
≤
K
dibn0.h
⊢
H
=
LHyp
⁡
K
dibn0.i
⊢
I
=
DIsoB
⁡
K
⁡
W
Assertion
dibn0
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
≠
∅
Proof
Step
Hyp
Ref
Expression
1
dibn0.b
⊢
B
=
Base
K
2
dibn0.l
⊢
≤
˙
=
≤
K
3
dibn0.h
⊢
H
=
LHyp
⁡
K
4
dibn0.i
⊢
I
=
DIsoB
⁡
K
⁡
W
5
eqid
⊢
LTrn
⁡
K
⁡
W
=
LTrn
⁡
K
⁡
W
6
eqid
⊢
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
=
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
7
eqid
⊢
DIsoA
⁡
K
⁡
W
=
DIsoA
⁡
K
⁡
W
8
1
2
3
5
6
7
4
dibval2
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
=
DIsoA
⁡
K
⁡
W
⁡
X
×
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
9
1
2
3
7
dian0
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
DIsoA
⁡
K
⁡
W
⁡
X
≠
∅
10
fvex
⊢
LTrn
⁡
K
⁡
W
∈
V
11
10
mptex
⊢
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
∈
V
12
11
snnz
⊢
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
≠
∅
13
9
12
jctir
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
DIsoA
⁡
K
⁡
W
⁡
X
≠
∅
∧
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
≠
∅
14
xpnz
⊢
DIsoA
⁡
K
⁡
W
⁡
X
≠
∅
∧
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
≠
∅
↔
DIsoA
⁡
K
⁡
W
⁡
X
×
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
≠
∅
15
13
14
sylib
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
DIsoA
⁡
K
⁡
W
⁡
X
×
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
≠
∅
16
8
15
eqnetrd
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
≠
∅