Metamath Proof Explorer


Theorem dibn0

Description: The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014)

Ref Expression
Hypotheses dibn0.b B=BaseK
dibn0.l ˙=K
dibn0.h H=LHypK
dibn0.i I=DIsoBKW
Assertion dibn0 KHLWHXBX˙WIX

Proof

Step Hyp Ref Expression
1 dibn0.b B=BaseK
2 dibn0.l ˙=K
3 dibn0.h H=LHypK
4 dibn0.i I=DIsoBKW
5 eqid LTrnKW=LTrnKW
6 eqid fLTrnKWIB=fLTrnKWIB
7 eqid DIsoAKW=DIsoAKW
8 1 2 3 5 6 7 4 dibval2 KHLWHXBX˙WIX=DIsoAKWX×fLTrnKWIB
9 1 2 3 7 dian0 KHLWHXBX˙WDIsoAKWX
10 fvex LTrnKWV
11 10 mptex fLTrnKWIBV
12 11 snnz fLTrnKWIB
13 9 12 jctir KHLWHXBX˙WDIsoAKWXfLTrnKWIB
14 xpnz DIsoAKWXfLTrnKWIBDIsoAKWX×fLTrnKWIB
15 13 14 sylib KHLWHXBX˙WDIsoAKWX×fLTrnKWIB
16 8 15 eqnetrd KHLWHXBX˙WIX