Metamath Proof Explorer


Theorem dibn0

Description: The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014)

Ref Expression
Hypotheses dibn0.b 𝐵 = ( Base ‘ 𝐾 )
dibn0.l = ( le ‘ 𝐾 )
dibn0.h 𝐻 = ( LHyp ‘ 𝐾 )
dibn0.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibn0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 dibn0.b 𝐵 = ( Base ‘ 𝐾 )
2 dibn0.l = ( le ‘ 𝐾 )
3 dibn0.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dibn0.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) )
7 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
8 1 2 3 5 6 7 4 dibval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) )
9 1 2 3 7 dian0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ≠ ∅ )
10 fvex ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∈ V
11 10 mptex ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ V
12 11 snnz { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ≠ ∅
13 9 12 jctir ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ≠ ∅ ∧ { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ≠ ∅ ) )
14 xpnz ( ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ≠ ∅ ∧ { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ≠ ∅ ) ↔ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) ≠ ∅ )
15 13 14 sylib ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) ≠ ∅ )
16 8 15 eqnetrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ≠ ∅ )