Step |
Hyp |
Ref |
Expression |
1 |
|
dibfna.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dibfna.j |
⊢ 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dibfna.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
fvex |
⊢ ( 𝐽 ‘ 𝑦 ) ∈ V |
5 |
|
snex |
⊢ { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ∈ V |
6 |
4 5
|
xpex |
⊢ ( ( 𝐽 ‘ 𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ∈ V |
7 |
|
eqid |
⊢ ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) = ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) |
8 |
6 7
|
fnmpti |
⊢ ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) Fn dom 𝐽 |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
12 |
9 1 10 11 2 3
|
dibfval |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) ) |
13 |
12
|
fneq1d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 Fn dom 𝐽 ↔ ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) Fn dom 𝐽 ) ) |
14 |
8 13
|
mpbiri |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn dom 𝐽 ) |