Metamath Proof Explorer


Theorem dibfna

Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses dibfna.h 𝐻 = ( LHyp ‘ 𝐾 )
dibfna.j 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dibfna.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibfna ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 Fn dom 𝐽 )

Proof

Step Hyp Ref Expression
1 dibfna.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dibfna.j 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
3 dibfna.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
4 fvex ( 𝐽𝑦 ) ∈ V
5 snex { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ∈ V
6 4 5 xpex ( ( 𝐽𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ∈ V
7 eqid ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) = ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) )
8 6 7 fnmpti ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) Fn dom 𝐽
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) )
12 9 1 10 11 2 3 dibfval ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 = ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) )
13 12 fneq1d ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐼 Fn dom 𝐽 ↔ ( 𝑦 ∈ dom 𝐽 ↦ ( ( 𝐽𝑦 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) } ) ) Fn dom 𝐽 ) )
14 8 13 mpbiri ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 Fn dom 𝐽 )