Step |
Hyp |
Ref |
Expression |
1 |
|
dibfna.h |
|- H = ( LHyp ` K ) |
2 |
|
dibfna.j |
|- J = ( ( DIsoA ` K ) ` W ) |
3 |
|
dibfna.i |
|- I = ( ( DIsoB ` K ) ` W ) |
4 |
|
fvex |
|- ( J ` y ) e. _V |
5 |
|
snex |
|- { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } e. _V |
6 |
4 5
|
xpex |
|- ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) e. _V |
7 |
|
eqid |
|- ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) = ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) |
8 |
6 7
|
fnmpti |
|- ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) Fn dom J |
9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
10 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
11 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
12 |
9 1 10 11 2 3
|
dibfval |
|- ( ( K e. V /\ W e. H ) -> I = ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) ) |
13 |
12
|
fneq1d |
|- ( ( K e. V /\ W e. H ) -> ( I Fn dom J <-> ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) Fn dom J ) ) |
14 |
8 13
|
mpbiri |
|- ( ( K e. V /\ W e. H ) -> I Fn dom J ) |