| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibfna.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dibfna.j |
|- J = ( ( DIsoA ` K ) ` W ) |
| 3 |
|
dibfna.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 4 |
|
fvex |
|- ( J ` y ) e. _V |
| 5 |
|
snex |
|- { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } e. _V |
| 6 |
4 5
|
xpex |
|- ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) e. _V |
| 7 |
|
eqid |
|- ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) = ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) |
| 8 |
6 7
|
fnmpti |
|- ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) Fn dom J |
| 9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 10 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 11 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
| 12 |
9 1 10 11 2 3
|
dibfval |
|- ( ( K e. V /\ W e. H ) -> I = ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) ) |
| 13 |
12
|
fneq1d |
|- ( ( K e. V /\ W e. H ) -> ( I Fn dom J <-> ( y e. dom J |-> ( ( J ` y ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) Fn dom J ) ) |
| 14 |
8 13
|
mpbiri |
|- ( ( K e. V /\ W e. H ) -> I Fn dom J ) |