Metamath Proof Explorer


Theorem dibdiadm

Description: Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses dibfna.h
|- H = ( LHyp ` K )
dibfna.j
|- J = ( ( DIsoA ` K ) ` W )
dibfna.i
|- I = ( ( DIsoB ` K ) ` W )
Assertion dibdiadm
|- ( ( K e. V /\ W e. H ) -> dom I = dom J )

Proof

Step Hyp Ref Expression
1 dibfna.h
 |-  H = ( LHyp ` K )
2 dibfna.j
 |-  J = ( ( DIsoA ` K ) ` W )
3 dibfna.i
 |-  I = ( ( DIsoB ` K ) ` W )
4 1 2 3 dibfna
 |-  ( ( K e. V /\ W e. H ) -> I Fn dom J )
5 4 fndmd
 |-  ( ( K e. V /\ W e. H ) -> dom I = dom J )