Description: Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dibfna.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
dibfna.j | ⊢ 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | ||
dibfna.i | ⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) | ||
Assertion | dibdiadm | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = dom 𝐽 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibfna.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | dibfna.j | ⊢ 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | dibfna.i | ⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | 1 2 3 | dibfna | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn dom 𝐽 ) |
5 | 4 | fndmd | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = dom 𝐽 ) |