Metamath Proof Explorer


Theorem dibdiadm

Description: Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses dibfna.h 𝐻 = ( LHyp ‘ 𝐾 )
dibfna.j 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dibfna.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibdiadm ( ( 𝐾𝑉𝑊𝐻 ) → dom 𝐼 = dom 𝐽 )

Proof

Step Hyp Ref Expression
1 dibfna.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dibfna.j 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
3 dibfna.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
4 1 2 3 dibfna ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 Fn dom 𝐽 )
5 4 fndmd ( ( 𝐾𝑉𝑊𝐻 ) → dom 𝐼 = dom 𝐽 )