| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibfn.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dibfn.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dibfn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dibfn.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
3 5 4
|
dibfna |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 7 |
1 2 3 5
|
diadm |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = { 𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊 } ) |
| 8 |
7
|
fneq2d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 Fn dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ↔ 𝐼 Fn { 𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊 } ) ) |
| 9 |
6 8
|
mpbid |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn { 𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊 } ) |