Metamath Proof Explorer


Theorem dibfnN

Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibfn.b B = Base K
dibfn.l ˙ = K
dibfn.h H = LHyp K
dibfn.i I = DIsoB K W
Assertion dibfnN K V W H I Fn x B | x ˙ W

Proof

Step Hyp Ref Expression
1 dibfn.b B = Base K
2 dibfn.l ˙ = K
3 dibfn.h H = LHyp K
4 dibfn.i I = DIsoB K W
5 eqid DIsoA K W = DIsoA K W
6 3 5 4 dibfna K V W H I Fn dom DIsoA K W
7 1 2 3 5 diadm K V W H dom DIsoA K W = x B | x ˙ W
8 7 fneq2d K V W H I Fn dom DIsoA K W I Fn x B | x ˙ W
9 6 8 mpbid K V W H I Fn x B | x ˙ W