Metamath Proof Explorer


Theorem dibfnN

Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibfn.b
|- B = ( Base ` K )
dibfn.l
|- .<_ = ( le ` K )
dibfn.h
|- H = ( LHyp ` K )
dibfn.i
|- I = ( ( DIsoB ` K ) ` W )
Assertion dibfnN
|- ( ( K e. V /\ W e. H ) -> I Fn { x e. B | x .<_ W } )

Proof

Step Hyp Ref Expression
1 dibfn.b
 |-  B = ( Base ` K )
2 dibfn.l
 |-  .<_ = ( le ` K )
3 dibfn.h
 |-  H = ( LHyp ` K )
4 dibfn.i
 |-  I = ( ( DIsoB ` K ) ` W )
5 eqid
 |-  ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W )
6 3 5 4 dibfna
 |-  ( ( K e. V /\ W e. H ) -> I Fn dom ( ( DIsoA ` K ) ` W ) )
7 1 2 3 5 diadm
 |-  ( ( K e. V /\ W e. H ) -> dom ( ( DIsoA ` K ) ` W ) = { x e. B | x .<_ W } )
8 7 fneq2d
 |-  ( ( K e. V /\ W e. H ) -> ( I Fn dom ( ( DIsoA ` K ) ` W ) <-> I Fn { x e. B | x .<_ W } ) )
9 6 8 mpbid
 |-  ( ( K e. V /\ W e. H ) -> I Fn { x e. B | x .<_ W } )