Metamath Proof Explorer


Theorem dibdmN

Description: Domain of the partial isomorphism A. (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibfn.b B=BaseK
dibfn.l ˙=K
dibfn.h H=LHypK
dibfn.i I=DIsoBKW
Assertion dibdmN KVWHdomI=xB|x˙W

Proof

Step Hyp Ref Expression
1 dibfn.b B=BaseK
2 dibfn.l ˙=K
3 dibfn.h H=LHypK
4 dibfn.i I=DIsoBKW
5 1 2 3 4 dibfnN KVWHIFnxB|x˙W
6 5 fndmd KVWHdomI=xB|x˙W