Metamath Proof Explorer


Theorem dibeldmN

Description: Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibfn.b B=BaseK
dibfn.l ˙=K
dibfn.h H=LHypK
dibfn.i I=DIsoBKW
Assertion dibeldmN KVWHXdomIXBX˙W

Proof

Step Hyp Ref Expression
1 dibfn.b B=BaseK
2 dibfn.l ˙=K
3 dibfn.h H=LHypK
4 dibfn.i I=DIsoBKW
5 eqid DIsoAKW=DIsoAKW
6 3 5 4 dibdiadm KVWHdomI=domDIsoAKW
7 6 eleq2d KVWHXdomIXdomDIsoAKW
8 1 2 3 5 diaeldm KVWHXdomDIsoAKWXBX˙W
9 7 8 bitrd KVWHXdomIXBX˙W