Step |
Hyp |
Ref |
Expression |
1 |
|
dibfn.b |
|- B = ( Base ` K ) |
2 |
|
dibfn.l |
|- .<_ = ( le ` K ) |
3 |
|
dibfn.h |
|- H = ( LHyp ` K ) |
4 |
|
dibfn.i |
|- I = ( ( DIsoB ` K ) ` W ) |
5 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
6 |
3 5 4
|
dibdiadm |
|- ( ( K e. V /\ W e. H ) -> dom I = dom ( ( DIsoA ` K ) ` W ) ) |
7 |
6
|
eleq2d |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> X e. dom ( ( DIsoA ` K ) ` W ) ) ) |
8 |
1 2 3 5
|
diaeldm |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom ( ( DIsoA ` K ) ` W ) <-> ( X e. B /\ X .<_ W ) ) ) |
9 |
7 8
|
bitrd |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> ( X e. B /\ X .<_ W ) ) ) |