Metamath Proof Explorer


Theorem dibeldmN

Description: Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibfn.b
|- B = ( Base ` K )
dibfn.l
|- .<_ = ( le ` K )
dibfn.h
|- H = ( LHyp ` K )
dibfn.i
|- I = ( ( DIsoB ` K ) ` W )
Assertion dibeldmN
|- ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> ( X e. B /\ X .<_ W ) ) )

Proof

Step Hyp Ref Expression
1 dibfn.b
 |-  B = ( Base ` K )
2 dibfn.l
 |-  .<_ = ( le ` K )
3 dibfn.h
 |-  H = ( LHyp ` K )
4 dibfn.i
 |-  I = ( ( DIsoB ` K ) ` W )
5 eqid
 |-  ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W )
6 3 5 4 dibdiadm
 |-  ( ( K e. V /\ W e. H ) -> dom I = dom ( ( DIsoA ` K ) ` W ) )
7 6 eleq2d
 |-  ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> X e. dom ( ( DIsoA ` K ) ` W ) ) )
8 1 2 3 5 diaeldm
 |-  ( ( K e. V /\ W e. H ) -> ( X e. dom ( ( DIsoA ` K ) ` W ) <-> ( X e. B /\ X .<_ W ) ) )
9 7 8 bitrd
 |-  ( ( K e. V /\ W e. H ) -> ( X e. dom I <-> ( X e. B /\ X .<_ W ) ) )