Step |
Hyp |
Ref |
Expression |
1 |
|
dibfn.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dibfn.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dibfn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dibfn.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
3 5 4
|
dibdiadm |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ) |
7 |
6
|
eleq2d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
8 |
1 2 3 5
|
diaeldm |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) |
9 |
7 8
|
bitrd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ dom 𝐼 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) |