Metamath Proof Explorer


Theorem dibelval1st2N

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibelval1st2.b B = Base K
dibelval1st2.l ˙ = K
dibelval1st2.h H = LHyp K
dibelval1st2.t T = LTrn K W
dibelval1st2.r R = trL K W
dibelval1st2.i I = DIsoB K W
Assertion dibelval1st2N K V W H X B X ˙ W Y I X R 1 st Y ˙ X

Proof

Step Hyp Ref Expression
1 dibelval1st2.b B = Base K
2 dibelval1st2.l ˙ = K
3 dibelval1st2.h H = LHyp K
4 dibelval1st2.t T = LTrn K W
5 dibelval1st2.r R = trL K W
6 dibelval1st2.i I = DIsoB K W
7 eqid DIsoA K W = DIsoA K W
8 1 2 3 7 6 dibelval1st K V W H X B X ˙ W Y I X 1 st Y DIsoA K W X
9 1 2 3 4 5 7 diatrl K V W H X B X ˙ W 1 st Y DIsoA K W X R 1 st Y ˙ X
10 8 9 syld3an3 K V W H X B X ˙ W Y I X R 1 st Y ˙ X