Metamath Proof Explorer


Theorem dibelval3

Description: Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses dibval3.b 𝐵 = ( Base ‘ 𝐾 )
dibval3.l = ( le ‘ 𝐾 )
dibval3.h 𝐻 = ( LHyp ‘ 𝐾 )
dibval3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dibval3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dibval3.o 0 = ( 𝑔𝑇 ↦ ( I ↾ 𝐵 ) )
dibval3.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibelval3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑋 ) ↔ ∃ 𝑓𝑇 ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 dibval3.b 𝐵 = ( Base ‘ 𝐾 )
2 dibval3.l = ( le ‘ 𝐾 )
3 dibval3.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dibval3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 dibval3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 dibval3.o 0 = ( 𝑔𝑇 ↦ ( I ↾ 𝐵 ) )
7 dibval3.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
9 1 2 3 4 6 8 7 dibval2 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) )
10 9 eleq2d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑋 ) ↔ 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ) )
11 1 2 3 4 5 8 diaelval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ↔ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑋 ) ) )
12 11 anbi1d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 0 ⟩ ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 0 ⟩ ) ) )
13 an13 ( ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ( 𝑠 ∈ { 0 } ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ) ) )
14 velsn ( 𝑠 ∈ { 0 } ↔ 𝑠 = 0 )
15 14 anbi1i ( ( 𝑠 ∈ { 0 } ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ) ) ↔ ( 𝑠 = 0 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ) ) )
16 13 15 bitri ( ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ( 𝑠 = 0 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ) ) )
17 16 exbii ( ∃ 𝑠 ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ∃ 𝑠 ( 𝑠 = 0 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ) ) )
18 4 fvexi 𝑇 ∈ V
19 18 mptex ( 𝑔𝑇 ↦ ( I ↾ 𝐵 ) ) ∈ V
20 6 19 eqeltri 0 ∈ V
21 opeq2 ( 𝑠 = 0 → ⟨ 𝑓 , 𝑠 ⟩ = ⟨ 𝑓 , 0 ⟩ )
22 21 eqeq2d ( 𝑠 = 0 → ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ↔ 𝑌 = ⟨ 𝑓 , 0 ⟩ ) )
23 22 anbi2d ( 𝑠 = 0 → ( ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 0 ⟩ ) ) )
24 20 23 ceqsexv ( ∃ 𝑠 ( 𝑠 = 0 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 0 ⟩ ) )
25 17 24 bitri ( ∃ 𝑠 ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 0 ⟩ ) )
26 anass ( ( ( 𝑓𝑇𝑌 = ⟨ 𝑓 , 0 ⟩ ) ∧ ( 𝑅𝑓 ) 𝑋 ) ↔ ( 𝑓𝑇 ∧ ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ) )
27 an32 ( ( ( 𝑓𝑇𝑌 = ⟨ 𝑓 , 0 ⟩ ) ∧ ( 𝑅𝑓 ) 𝑋 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 0 ⟩ ) )
28 26 27 bitr3i ( ( 𝑓𝑇 ∧ ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑋 ) ∧ 𝑌 = ⟨ 𝑓 , 0 ⟩ ) )
29 12 25 28 3bitr4g ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ∃ 𝑠 ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ( 𝑓𝑇 ∧ ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ) ) )
30 29 exbidv ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ∃ 𝑓𝑠 ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ∃ 𝑓 ( 𝑓𝑇 ∧ ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ) ) )
31 elxp ( 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ↔ ∃ 𝑓𝑠 ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) )
32 df-rex ( ∃ 𝑓𝑇 ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ↔ ∃ 𝑓 ( 𝑓𝑇 ∧ ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ) )
33 30 31 32 3bitr4g ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ↔ ∃ 𝑓𝑇 ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ) )
34 10 33 bitrd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑋 ) ↔ ∃ 𝑓𝑇 ( 𝑌 = ⟨ 𝑓 , 0 ⟩ ∧ ( 𝑅𝑓 ) 𝑋 ) ) )