Step |
Hyp |
Ref |
Expression |
1 |
|
dibval3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dibval3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dibval3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dibval3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dibval3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dibval3.o |
⊢ 0 = ( 𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
7 |
|
dibval3.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 2 3 4 6 8 7
|
dibval2 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ) |
10 |
9
|
eleq2d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ↔ 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ) ) |
11 |
1 2 3 4 5 8
|
diaelval |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ↔ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) ) |
12 |
11
|
anbi1d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ) ) |
13 |
|
an13 |
⊢ ( ( 𝑌 = 〈 𝑓 , 𝑠 〉 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ( 𝑠 ∈ { 0 } ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 𝑠 〉 ) ) ) |
14 |
|
velsn |
⊢ ( 𝑠 ∈ { 0 } ↔ 𝑠 = 0 ) |
15 |
14
|
anbi1i |
⊢ ( ( 𝑠 ∈ { 0 } ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 𝑠 〉 ) ) ↔ ( 𝑠 = 0 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 𝑠 〉 ) ) ) |
16 |
13 15
|
bitri |
⊢ ( ( 𝑌 = 〈 𝑓 , 𝑠 〉 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ( 𝑠 = 0 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 𝑠 〉 ) ) ) |
17 |
16
|
exbii |
⊢ ( ∃ 𝑠 ( 𝑌 = 〈 𝑓 , 𝑠 〉 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ∃ 𝑠 ( 𝑠 = 0 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 𝑠 〉 ) ) ) |
18 |
4
|
fvexi |
⊢ 𝑇 ∈ V |
19 |
18
|
mptex |
⊢ ( 𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ∈ V |
20 |
6 19
|
eqeltri |
⊢ 0 ∈ V |
21 |
|
opeq2 |
⊢ ( 𝑠 = 0 → 〈 𝑓 , 𝑠 〉 = 〈 𝑓 , 0 〉 ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑠 = 0 → ( 𝑌 = 〈 𝑓 , 𝑠 〉 ↔ 𝑌 = 〈 𝑓 , 0 〉 ) ) |
23 |
22
|
anbi2d |
⊢ ( 𝑠 = 0 → ( ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 𝑠 〉 ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ) ) |
24 |
20 23
|
ceqsexv |
⊢ ( ∃ 𝑠 ( 𝑠 = 0 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 𝑠 〉 ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ) |
25 |
17 24
|
bitri |
⊢ ( ∃ 𝑠 ( 𝑌 = 〈 𝑓 , 𝑠 〉 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ) |
26 |
|
anass |
⊢ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ↔ ( 𝑓 ∈ 𝑇 ∧ ( 𝑌 = 〈 𝑓 , 0 〉 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) ) |
27 |
|
an32 |
⊢ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ) |
28 |
26 27
|
bitr3i |
⊢ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑌 = 〈 𝑓 , 0 〉 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ∧ 𝑌 = 〈 𝑓 , 0 〉 ) ) |
29 |
12 25 28
|
3bitr4g |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ∃ 𝑠 ( 𝑌 = 〈 𝑓 , 𝑠 〉 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ( 𝑓 ∈ 𝑇 ∧ ( 𝑌 = 〈 𝑓 , 0 〉 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) ) ) |
30 |
29
|
exbidv |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ∃ 𝑓 ∃ 𝑠 ( 𝑌 = 〈 𝑓 , 𝑠 〉 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ↔ ∃ 𝑓 ( 𝑓 ∈ 𝑇 ∧ ( 𝑌 = 〈 𝑓 , 0 〉 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) ) ) |
31 |
|
elxp |
⊢ ( 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ↔ ∃ 𝑓 ∃ 𝑠 ( 𝑌 = 〈 𝑓 , 𝑠 〉 ∧ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ 𝑠 ∈ { 0 } ) ) ) |
32 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ 𝑇 ( 𝑌 = 〈 𝑓 , 0 〉 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ↔ ∃ 𝑓 ( 𝑓 ∈ 𝑇 ∧ ( 𝑌 = 〈 𝑓 , 0 〉 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) ) |
33 |
30 31 32
|
3bitr4g |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝑌 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) ↔ ∃ 𝑓 ∈ 𝑇 ( 𝑌 = 〈 𝑓 , 0 〉 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) ) |
34 |
10 33
|
bitrd |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ↔ ∃ 𝑓 ∈ 𝑇 ( 𝑌 = 〈 𝑓 , 0 〉 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) ) |