Metamath Proof Explorer
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012) (Proof
shortened by Wolf Lammen, 31-Dec-2012)
|
|
Ref |
Expression |
|
Assertion |
an13 |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
an21 |
⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
2 |
|
ancom |
⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜒 ) ↔ ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ) ) ) |
3 |
1 2
|
bitr3i |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ) ) ) |