Metamath Proof Explorer


Theorem an13

Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012) (Proof shortened by Wolf Lammen, 31-Dec-2012)

Ref Expression
Assertion an13 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜒 ∧ ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 an21 ( ( ( 𝜓𝜑 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
2 ancom ( ( ( 𝜓𝜑 ) ∧ 𝜒 ) ↔ ( 𝜒 ∧ ( 𝜓𝜑 ) ) )
3 1 2 bitr3i ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜒 ∧ ( 𝜓𝜑 ) ) )