Metamath Proof Explorer


Theorem dihvalcq

Description: Value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . TODO: Use dihvalcq2 (with lhpmcvr3 for ( Q .\/ ( X ./\ W ) ) = X simplification) that changes C and D to I and make this obsolete. Do to other theorems as well. (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihvalcq.b
|- B = ( Base ` K )
dihvalcq.l
|- .<_ = ( le ` K )
dihvalcq.j
|- .\/ = ( join ` K )
dihvalcq.m
|- ./\ = ( meet ` K )
dihvalcq.a
|- A = ( Atoms ` K )
dihvalcq.h
|- H = ( LHyp ` K )
dihvalcq.i
|- I = ( ( DIsoH ` K ) ` W )
dihvalcq.d
|- D = ( ( DIsoB ` K ) ` W )
dihvalcq.c
|- C = ( ( DIsoC ` K ) ` W )
dihvalcq.u
|- U = ( ( DVecH ` K ) ` W )
dihvalcq.p
|- .(+) = ( LSSum ` U )
Assertion dihvalcq
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( I ` X ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) )

Proof

Step Hyp Ref Expression
1 dihvalcq.b
 |-  B = ( Base ` K )
2 dihvalcq.l
 |-  .<_ = ( le ` K )
3 dihvalcq.j
 |-  .\/ = ( join ` K )
4 dihvalcq.m
 |-  ./\ = ( meet ` K )
5 dihvalcq.a
 |-  A = ( Atoms ` K )
6 dihvalcq.h
 |-  H = ( LHyp ` K )
7 dihvalcq.i
 |-  I = ( ( DIsoH ` K ) ` W )
8 dihvalcq.d
 |-  D = ( ( DIsoB ` K ) ` W )
9 dihvalcq.c
 |-  C = ( ( DIsoC ` K ) ` W )
10 dihvalcq.u
 |-  U = ( ( DVecH ` K ) ` W )
11 dihvalcq.p
 |-  .(+) = ( LSSum ` U )
12 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
13 1 2 3 4 5 6 7 8 9 10 12 11 dihvalcqpre
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( I ` X ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) )