Step |
Hyp |
Ref |
Expression |
1 |
|
lhpmcvr2.b |
|- B = ( Base ` K ) |
2 |
|
lhpmcvr2.l |
|- .<_ = ( le ` K ) |
3 |
|
lhpmcvr2.j |
|- .\/ = ( join ` K ) |
4 |
|
lhpmcvr2.m |
|- ./\ = ( meet ` K ) |
5 |
|
lhpmcvr2.a |
|- A = ( Atoms ` K ) |
6 |
|
lhpmcvr2.h |
|- H = ( LHyp ` K ) |
7 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> K e. HL ) |
8 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> P e. A ) |
9 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> X e. B ) |
10 |
|
simpl1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> W e. H ) |
11 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
12 |
10 11
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> W e. B ) |
13 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> P .<_ X ) |
14 |
1 2 3 4 5
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ W e. B ) /\ P .<_ X ) -> ( P .\/ ( X ./\ W ) ) = ( X ./\ ( P .\/ W ) ) ) |
15 |
7 8 9 12 13 14
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( P .\/ ( X ./\ W ) ) = ( X ./\ ( P .\/ W ) ) ) |
16 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( K e. HL /\ W e. H ) ) |
17 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( P e. A /\ -. P .<_ W ) ) |
18 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
19 |
2 3 18 5 6
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
20 |
16 17 19
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( P .\/ W ) = ( 1. ` K ) ) |
21 |
20
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( X ./\ ( P .\/ W ) ) = ( X ./\ ( 1. ` K ) ) ) |
22 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
23 |
7 22
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> K e. OL ) |
24 |
1 4 18
|
olm11 |
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ ( 1. ` K ) ) = X ) |
25 |
23 9 24
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( X ./\ ( 1. ` K ) ) = X ) |
26 |
15 21 25
|
3eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( P .\/ ( X ./\ W ) ) = X ) |
27 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> K e. HL ) |
28 |
27
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> K e. Lat ) |
29 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> P e. A ) |
30 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
31 |
29 30
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> P e. B ) |
32 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> X e. B ) |
33 |
|
simpl1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> W e. H ) |
34 |
33 11
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> W e. B ) |
35 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
36 |
28 32 34 35
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> ( X ./\ W ) e. B ) |
37 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ P e. B /\ ( X ./\ W ) e. B ) -> P .<_ ( P .\/ ( X ./\ W ) ) ) |
38 |
28 31 36 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> P .<_ ( P .\/ ( X ./\ W ) ) ) |
39 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> ( P .\/ ( X ./\ W ) ) = X ) |
40 |
38 39
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> P .<_ X ) |
41 |
26 40
|
impbida |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .<_ X <-> ( P .\/ ( X ./\ W ) ) = X ) ) |